Abstract

This study aims to present simple conversion expressions of strains–stresses and the energy density for beams and plates subjected to high-frequency random forces using the radiative energy transfer method (RETM). Euler–Bernoulli beam theory and Kirchhoff plate theory are introduced to describe the deflections of beam and plate. The conversion expressions of strains–stresses and energy density for a single propagation wave are quickly established by dispersion relations. For multi-cylindrical wave fields, the strains–stresses are superimposed by the wave fields generated by the actual source in the domain and the wave fields reflected by the fictitious sources at boundaries according to Huygens’ superposition principle. The conversion expressions of strains–stresses and energy density in the energy finite element method (EFEM), which supposes that the superposition of plane waves forms the wave field, are also derived. Numerical examples indicate that in damping-frequency space, the conversion expressions obtained by RETM have a wider application region than those obtained by EFEM and can be applied to a low-frequency band than the corresponding energy algorithm itself.

References

1.
Yuan
,
L.
, and
Batra
,
R. C.
,
2019
, “
Vibrations of an Incompressible Linearly Elastic Plate Using Discon-Tinuous Finite Element Basis Functions for Pressure
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051016
.
2.
Ghosh
,
R.
, and
Mukherjee
,
S.
,
2009
, “
Fully La-Grangian Modeling of Dynamics of MEMS With Thin Beams—Part I: Undamped Vibrations
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051007
.
3.
Ghosh
,
R.
, and
Mukherjee
,
S.
,
2009
, “
Fully La-Grangian Modeling of Dynamics of MEMS With Thin Beams—Part II: Damped Vibrations
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051008
.
4.
Sapountzakis
,
E. J.
, and
Katsikadelis
,
J. T.
,
1992
, “
Unilaterally Supported Plates on Elastic Foundations by the Boundary Element Method
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
580
586
.
5.
Jin
,
J.
,
Tong Quek
,
S.
, and
Wang
,
Q.
,
2005
, “
Wave Boundary Element to Study Lamb Wave Propagation in Plates
,”
J. Sound Vib.
,
288
(
1
), pp.
195
213
.
6.
Lyon
,
R. H.
, and
DeJong
,
R. G.
,
1995
,
Theory and Application of Statistical Energy Analysis
, 2nd ed.,
Newnes
,
Boston, MA
.
7.
Le Bot
,
A.
,
2015
,
Foundation of Statistical Energy Analysis in Vibroacoustics
,
Oxford University Press
,
New York
.
8.
Dowell
,
E. H.
, and
Kubota
,
Y.
,
1985
, “
Asymptotic Modal Analysis and Statistical Energy Analysis of Dynamical Systems
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
949
957
.
9.
Bolduc
,
M.
, and
Atalla
,
N.
,
2008
, “
Measurement of SEA Damping Loss Factor for Complex Structures
,”
J. Acoust. Soc. Am.
,
123
(
5
), pp.
3060
3060
.
10.
Bin Fazail
,
M. N.
,
Chazot
,
J.-D.
,
Lefebvre
,
G.
, and
Atalla
,
N.
,
2023
, “
Damping Loss Factor Characterization of Complex Structures Using a Green's Function-Based Model
,”
J. Sound Vib.
,
552
, p.
117642
.
11.
Totaro
,
N.
,
Dodard
,
C.
, and
Guyader
,
J. L.
,
2009
, “
SEA Coupling Loss Factors of Complex Vibro-Acoustic Systems
,”
ASME J. Vib. Acoust.
,
131
(
4
), p.
041009
.
12.
Patil
,
V. H.
, and
Manik
,
D. N.
,
2020
, “
Determination of Coupling Loss Factors Between Two Plates Joined at a Right Angle Using the Wave Approach
,”
ASME J. Vib. Acoust.
,
142
(
4
), p.
041006
.
13.
Le Bot
,
A.
, and
Cotoni
,
V.
,
2010
, “
Validity Diagrams of Statistical Energy Analysis
,”
J. Sound Vib.
,
329
(
2
), pp.
221
235
.
14.
Nefske
,
D. J.
, and
Sung
,
S. H.
,
1989
, “
Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams
,”
J. Vib. Acoust. Stress Reliab.
,
111
(
1
), pp.
94
100
.
15.
Langley
,
R. S.
,
1995
, “
On the Vibrational Conductivity Approach to High Frequency Dynamics for Two-Dimensional Structural Components
,”
J. Sound Vib.
,
182
(
4
), pp.
637
657
.
16.
Mace
,
B. R.
, and
Shorter
,
P. J.
,
2000
, “
Energy Flow Models From Finite Element Analysis
,”
J. Sound Vib.
,
233
(
3
), pp.
369
389
.
17.
Dong
,
J.
,
Choi
,
K. K.
,
Wang
,
A.
,
Zhang
,
W.
, and
Vlahopoulos
,
N.
,
2005
, “
Parametric Design Sensitivity Analysis of High-Frequency Structural–Acoustic Problems Using Energy Finite Element Method
,”
Int. J. Numer. Methods. Eng.
,
62
(
1
), pp.
83
121
.
18.
Chen
,
Z.
,
Yang
,
Z.
,
Guo
,
N.
, and
Zhang
,
G.
,
2018
, “
An Energy Finite Element Method for High Frequency Vibration Analysis of Beams With Axial Force
,”
Appl. Math. Modell.
,
61
, pp.
521
539
.
19.
Chen
,
Z.
,
Yang
,
Z.
,
Gu
,
Y.
, and
Guo
,
S.
,
2019
, “
An Energy Flow Model for High-Frequency Vibration Analysis of Two-Dimensional Panels in Super-Sonic Airflow
,”
Appl. Math. Modell.
,
76
, pp.
495
512
.
20.
Liu
,
H.
,
Zhang
,
Z.
,
Li
,
B.
,
Xie
,
M.
,
Hong
,
J.
, and
Zheng
,
S.
,
2021
, “
Topology Optimization of High Frequency Vibration Problems Using the EFEM-Based Approach
,”
Thin-Walled Struct.
,
160
, p.
107324
.
21.
Kong
,
X.
,
Chen
,
H.
,
Zhu
,
D.
, and
Zhang
,
W.
,
2014
, “
Study on the Validity Region of Energy Finite Element Analysis
,”
J. Sound Vib.
,
333
(
9
), pp.
2601
2616
.
22.
Le Bot
,
A.
,
1998
, “
Geometric Diffusion of Vibrational Energy and Comparison With the Vibrational Conductivity Approach
,”
J. Sound Vib.
,
212
(
4
), pp.
637
647
.
23.
Le Bot
,
A.
,
2002
, “
Energy Transfer for High Frequencies in Built-Up Structures
,”
J. Sound Vib.
,
250
(
2
), pp.
247
275
.
24.
Zhong
,
Q.
,
Chen
,
H. B.
, and
LeBot
,
A.
,
2021
, “
Radiative Energy Transfer Model for Finite Anisotropic Plates
,”
J. Sound Vib.
,
497
, p.
115947
.
25.
Zhong
,
Q.
,
Huang
,
J.
, and
Chen
,
H.
,
2022
, “
Vibrational Energy Estimation of Cracked Composite Beams Using Radiative Energy Transfer Method
,”
Compos. Struct.
,
294
(
2022
), p.
115710
.
26.
Huang
,
J.
,
Zhong
,
Q.
, and
Chen
,
H.
,
2023
, “
Radiative Energy Transfer Model for High Frequency Vibration of Functionally Graded Beams in Thermal Environment
,”
Thin-Walled Struct.
,
186
, p.
110714
.
27.
Cotoni
,
V.
, and
Le Bot
,
A.
,
2003
, “
Specular and Diffuse Reflections of Rays in Coupled Thin Plates at High Frequencies
,”
J. Sound Vib.
,
265
(
1
), pp.
23
41
.
28.
Renji
,
K.
, and
Josephine Kelvina Florence
,
S.
,
2017
, “
Estimation of Strains/Stresses in Composite Panels Using Statistical Energy Analysis
,”
J. Sound Vib.
,
408
, pp.
400
410
.
29.
Renji
,
K.
,
Josephine Kelvina Florence
,
S.
, and
Mahalakshmi
,
M.
,
2019
, “
Strains/Stresses in Plates subjected to Reverberant Acoustic Excitation Using Statistical Energy Analysis
,”
J. Vib. Eng. Technol.
,
7
(
2
), pp.
101
106
.
30.
Wang
,
Y.
,
Chen
,
H.
, and
Zhou
,
H.
,
2016
, “
A Fatigue Life Estimation Algorithm Based on Statistical Energy Analysis in High-Frequency Random Processes
,”
Int. J. Fatigue
,
83
, pp.
221
229
.
31.
Le Bot
,
A.
,
2005
, “
Comparison of Vibrational Conductivity and Radiative Energy Transfer Methods
,”
J. Sound Vib.
,
283
(
1
), pp.
135
151
.
32.
Le Bot
,
A.
,
1998
, “
A Vibroacoustic Model for High Frequency Analysis
,”
J. Sound Vib.
,
211
(
4
), pp.
537
554
.
33.
Sadd
,
M. H.
,
2021
,
Elasticity
, 4th ed.,
Academic Press
,
Cambridge, MA
.
34.
Park
,
D.-H.
,
Hong
,
S.-Y.
,
Kil
,
H.-G.
, and
And Jeon
,
J.-J.
,
2001
, “
Power Flow Models and Analysis of In-Plane Waves in Finite Coupled Thin Plates
,”
J. Sound Vib.
,
244
(
4
), pp.
651
668
.
35.
Le Bot
,
A.
,
Bazari
,
Z.
,
Klein
,
P.
, and
Lelong
,
J.
,
2017
, “
Statistical Analysis of Vibration in Tyres
,”
J. Sound Vib.
,
392
, pp.
187
199
.
36.
Sgard
,
F.
,
Nelisse
,
H.
,
Atalla
,
N.
,
Amedin
,
C. K.
, and
Oddo
,
R.
,
2010
, “
Prediction of the Acoustical Performance of Enclosures Using a Hybrid Statistical Energy Analysis: Image Source Model
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
784
795
.
37.
Tsunokuni
,
I.
,
Kurokawa
,
K.
,
Matsuhashi
,
H.
,
Ikeda
,
Y.
, and
Osaka
,
N.
,
2021
, “
Spatial Extrapolation of Early Room Impulse Responses in Local Area Using Sparse Equivalent Sources and Image Source Method
,”
Appl. Acoust.
,
179
, p.
108027
.
38.
Cuenca
,
J.
,
Gautier
,
F.
, and
Simon
,
L.
,
2009
, “
The Image Source Method for Calculating the Vibrations of Simply Supported Convex Polygonal Plates
,”
J. Sound Vib.
,
322
(
4
), pp.
1048
1069
.
39.
Roozen
,
N.
,
Leclère
,
Q.
,
Ege
,
K.
, and
Gerges
,
Y.
,
2017
, “
Estimation of Plate Material Properties by Means of a Complex Wavenumber Fit Using Hankel's Functions and the Image Source Method
,”
J. Sound Vib.
,
390
, pp.
257
271
.
You do not currently have access to this content.