Graphical Abstract Figure

Schematic of the microplane model for polymers

Graphical Abstract Figure

Schematic of the microplane model for polymers

Close modal

Abstract

The multiaxial damage behavior of brittle polymers is highly complex, involving a stark tension–compression asymmetry and strong pressure sensitivity. These aspects are challenging to predict via phenomenological tensor-based damage models. Recognizing that these behaviors stem from various microscale damage mechanisms, this work presents a novel adaptation of the microplane constitutive model for these materials. The salient feature of the model is the semi-multiscale architecture consisting of “microplanes,” which are imagined planes of various orientations within the material microstructure. Various tensile and compressive damage mechanisms are formulated in terms of stress–strain vectors acting on these microplanes. The homogenized macroscale stress tensor is obtained via the principle of the virtual work. This multiscale arrangement allows simple, intuitive, and physically based formulations of microscale damage mechanisms as well as easy distinction of tension and compression. The mechanisms considered here include tensile microcracking, shear-driven plastic-frictional damage, and far postpeak compression hardening. The formulation involves splitting the volumetric and deviatoric components of stresses, which enables properly capturing Poisson ratios greater than 0.25. It also includes a normal strain dependence of the microplane strain limits governing frictional damage evolution. The model is calibrated and successfully validated against experimental data on several polymers under uniaxial tension, compression, and triaxial compression. The model is demonstrated to capture the tension–compression asymmetry of the inelastic behavior, as well as the pressure-sensitive nonlinear behavior under triaxial compression, in excellent agreement with experiments. Notably, the predictions under triaxial compression are found to outperform the Drucker Prager model, thus highlighting the superior potential of the microplane modeling approach for multiaxial damage in polymers.

References

1.
Meijer
,
H. E.
, and
Govaert
,
L. E.
,
2005
, “
Mechanical Performance of Polymer Systems: The Relation Between Structure and Properties
,”
Prog. Polym. Sci.
,
30
(
8–9
), pp.
915
938
.
2.
Boyce
,
M. C.
,
Arruda
,
E. M.
, and
Jayachandran
,
R.
,
1994
, “
The Large Strain Compression, Tension, and Simple Shear of Polycarbonate
,”
Polym. Eng. Sci.
,
34
(
9
), pp.
716
725
.
3.
Littell
,
J. D.
,
Ruggeri
,
C. R.
,
Goldberg
,
R. K.
,
Roberts
,
G. D.
,
Arnold
,
W. A.
, and
Binienda
,
W. K.
,
2008
, “
Measurement of Epoxy Resin Tension, Compression, and Shear Stress–Strain Curves Over a Wide Range of Strain Rates Using Small Test Specimens
,”
J. Aeros. Eng.
,
21
(
3
), pp.
162
173
.
4.
Fiedler
,
B.
,
Hojo
,
M.
,
Ochiai
,
S.
,
Schulte
,
K.
, and
Ando
,
M.
,
2001
, “
Failure Behavior of an Epoxy Matrix Under Different Kinds of Static Loading
,”
Compos. Sci. Technol.
,
61
(
11
), pp.
1615
1624
.
5.
Buckley
,
C. P.
,
Harding
,
J.
,
Hou
,
J.
,
Ruiz
,
C.
, and
Trojanowski
,
A.
,
2001
, “
Deformation of Thermosetting Resins at Impact Rates of Strain, Part I: Experimental Study
,”
J. Mech. Phys. Solids
,
49
(
7
), pp.
1517
1538
.
6.
Lankford
,
J.
,
1997
, “
The Compressive Failure of Polymeric Composites Under Hydrostatic Confinement
,”
Compos. Part A: Appl. Sci. Manuf.
,
28
(
5
), pp.
409
418
.
7.
Holliday
,
L.
,
Mann
,
J.
,
Pogany
,
G.
,
Pugh
,
H. L. D.
, and
Gunn
,
D.
,
1964
, “
Ductility of Polystyrene
,”
Nature
,
202
(
4930
), pp.
381
382
.
8.
Christiansen
,
A. W.
,
Baer
,
E.
, and
Radcliffe
,
S.
,
1971
, “
The Mechanical Behaviour of Polymers Under High Pressure
,”
Philos. Magaz.: J. Theor. Exp. Appl. Phys.
,
24
(
188
), pp.
451
467
.
9.
Rabinowitz
,
S.
,
Ward
,
I.
, and
Parry
,
J.
,
1970
, “
The Effect of Hydrostatic Pressure on the Shear Yield Behaviour of Polymers
,”
J. Mater. Sci.
,
5
(
1
), pp.
29
39
.
10.
Aulova
,
A.
,
Oseli
,
A.
,
Bek
,
M.
,
Prodan
,
T.
, and
Emri
,
I.
,
2020
, “Effect of Pressure on Mechanical Properties of Polymers,”
Encyclopedia of Continuum Mechanics
,
H.
Altenbach
and
A.
Öchsner
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
733
746
.
11.
Paterson
,
M.
,
1964
, “
Effect of Pressure on Young’s Modulus and the Glass Transition in Rubbers
,”
J. Appl. Phys.
,
35
(
1
), pp.
176
179
.
12.
Hoppel
,
C. P.
,
Bogetti
,
T. A.
, and
Gillespie
,
J. W.
,
1995
, “
Literature Review-Effects of Hydrostatic Pressure on the Mechanical Behavior of Composite Materials
,”
J. Thermoplastic Composite Mater.
,
8
(
4
), pp.
375
409
.
13.
Birch
,
F.
,
1938
, “
The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain
,”
J. Appl. Phys.
,
9
(
4
), pp.
279
288
.
14.
Murnaghan
,
F. D.
,
1937
, “
Finite Deformations of an Elastic Solid
,”
Am. J. Math.
,
59
(
2
), pp.
235
260
.
15.
Mears
,
D.
,
Pae
,
K.
, and
Sauer
,
J.
,
1969
, “
Effects of Hydrostatic Pressure on the Mechanical Behavior of Polyethylene and Polypropylene
,”
J. Appl. Phys.
,
40
(
11
), pp.
4229
4237
.
16.
Siviour
,
C. R.
, and
Jordan
,
J. L.
,
2016
, “
High Strain Rate Mechanics of Polymers: A Review
,”
J. Dyn. Behav. Mater.
,
2
(
1
), pp.
15
32
.
17.
Sweeney
,
J.
, and
Ward
,
I. M.
,
2012
,
Mechanical Properties of Solid Polymers
,
John Wiley & Sons
,
Hoboken, NJ
.
18.
Gilat
,
A.
,
Goldberg
,
R.
, and
Roberts
,
G.
,
2005
, “
Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading
,”
J. Aeros. Eng.
,
20
(
4
), pp.
75
89
.
19.
Haward
,
R. N.
,
Thackray
,
G.
, and
Sugden
,
T. M.
,
1968
, “
The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics
,”
Proc. R. Soc. London, Seri. A. Math. Phys. Sci.
,
302
(
1471
), pp.
453
472
.
20.
Zimm
,
B.
, and
Kilb
,
R.
,
1959
, “
The Physics of Rubber Elasticity: L.R.G. Treloar: Second Edition. Clarendon Press, Oxford, 1958. 342 pp., 40s
,”
J. Phys. Chem. Solids
,
9
(
3
), p.
338
.
21.
Argon
,
A.
,
Megusar
,
J.
, and
Grant
,
N.
,
1985
, “
Shear Band Induced Dilations in Metallic Glasses
,”
Scr. Metall.
,
19
(
5
), pp.
591
596
.
22.
Buckley
,
C.
, and
Jones
,
D.
,
1995
, “
Glass-Rubber Constitutive Model for Amorphous Polymers Near the Glass Transition
,”
Polymer
,
36
(
17
), pp.
3301
3312
.
23.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers, Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
7
(
1
), pp.
15
33
.
24.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers, Part Ii: Numerical Simulation of Hydrostatic Extrusion
,”
Mech. Mater.
7
(
1
), pp.
35
47
.
25.
Fedulov
,
B.
,
Safonov
,
A.
,
Kantor
,
M.
, and
Lomov
,
S.
,
2017
, “
Modelling of Thermoplastic Polymer Failure in Fiber Reinforced Composites
,”
Composite Struct.
,
163
, pp.
293
301
.
26.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
.
27.
Vena
,
P.
,
Gastaldi
,
D.
, and
Contro
,
R.
,
2008
, “
Determination of the Effective Elastic–Plastic Response of Metal–Ceramic Composites
,”
Int. J. Plast.
,
24
(
3
), pp.
483
508
.
28.
Quinson
,
R.
,
Perez
,
J.
,
Rink
,
M.
, and
Pavan
,
A.
,
1997
, “
Yield Criteria for Amorphous Glassy Polymers
,”
J. Mater. Sci.
,
32
(
5
), pp.
1371
1379
.
29.
Bardia
,
P.
, and
Narasimhan
,
R.
,
2006
, “
Characterisation of Pressure-Sensitive Yielding in Polymers
,”
Strain
,
42
(
3
), pp.
187
196
.
30.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1985
, “
Microplane Model for Progressive Fracture of Concrete and Rock
,”
J. Eng. Mech.
,
111
(
4
), pp.
559
582
.
31.
Bažant
,
Z. P.
, and
Gambarova
,
P. G.
,
1984
, “
Crack Shear in Concrete: Crack Band Microflane Model
,”
J. Struct. Eng.
,
110
(
9
), pp.
2015
2035
.
32.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Metals
,
62
(
1
), pp.
307
324
.
33.
Batdorf
,
S. B.
, and
Budiansky
,
B.
,
1949
,
A Mathematical Theory of Plasticity Based on the Concept of Slip
,
National Advisory Committee for Aeronautics
,
Washington, DC
, pp.
1
33
.
NACA-TN-1871
.
34.
Kirane
,
K.
, and
Bažant
,
Z. P.
,
2015
, “
Microplane Damage Model for Fatigue of Quasibrittle Materials: Sub-critical Crack Growth, Lifetime and Residual Strength
,”
Int. J. Fatigue
,
70
, pp.
93
105
.
35.
Kirane
,
K.
,
Salviato
,
M.
, and
Bažant
,
Z. P.
,
2016
, “
Microplane Triad Model for Simple and Accurate Prediction of Orthotropic Elastic Constants of Woven Fabric Composites
,”
J. Compos. Mater.
,
50
(
9
), pp.
1247
1260
.
36.
Kirane
,
K.
,
Su
,
Y.
, and
Bažant
,
Z. P.
,
2015
, “
Strain-Rate-Dependent Microplane Model for High-Rate Comminution of Concrete Under Impact Based on Kinetic Energy Release Theory
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
471
(
2182
), p.
20150535
.
37.
Caner
,
F. C.
,
Bažant
,
Z. P.
,
Hoover
,
C. G.
,
Waas
,
A. M.
, and
Shahwan
,
K. W.
,
2011
, “
Microplane Model for Fracturing Damage of Triaxially Braided Fiber-Polymer Composites
,”
ASME J. Eng. Mater. Technol.
,
133
(
2
), p.
021024
.
38.
Mehrabi
,
R.
,
Kadkhodaei
,
M.
, and
Elahinia
,
M.
,
2014
, “
A Thermodynamically-Consistent Microplane Model for Shape Memory Alloys
,”
Int. J. Solids Struct.
,
51
(
14
), pp.
2666
2675
.
39.
Bažant
,
Z. P.
, and
Kim
,
J. -K.
,
1986
, “
Creep of Anisotropic Clay: Microplane Model
,”
J. Geotech. Eng.
,
112
(
4
), pp.
458
475
.
40.
Bažant
,
Z. P.
, and
Zi
,
G.
,
2003
, “
Microplane Constitutive Model for Porous Isotropic Rocks
,”
Inter. J. Numer. Anal. Methods Geomech.
,
27
(
1
), pp.
25
47
.
41.
Brocca
,
M.
,
Bažant
,
Z. P.
, and
Daniel
,
I. M.
,
2001
, “
Microplane Model for Stiff Foams and Finite Element Analysis of Sandwich Failure by Core Indentation
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
8111
8132
.
42.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Carol
,
I.
,
Adley
,
M. D.
, and
Akers
,
S. A.
,
2000
, “
Microplane Model M4 for Concrete. I: Formulation With Work-Conjugate Deviatoric Stress
,”
J. Eng. Mech.
,
126
(
9
), pp.
944
953
.
43.
Bažant
,
Z. P.
, and
Prat
,
P. C.
,
1988
, “
Microplane Model for Brittle-Plastic Material: I. Theory
,”
J. Eng. Mech.
,
114
(
10
), pp.
1672
1688
.
44.
Carol
,
I.
, and
Bazant
,
Z. P.
,
1997
, “
Damage and Plasticity in Microplane Theory
,”
Int. J. Solids. Struct.
,
34
(
29
), pp.
3807
3835
.
45.
Bažant
,
Z. P.
,
Xiang
,
Y.
, and
Prat
,
P. C.
,
1996
, “
Microplane Model for Concrete. I: Stress-Strain Boundaries and Finite Strain
,”
J. Eng. Mech.
,
122
(
3
), pp.
245
254
.
46.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. I: Formulation
,”
J. Eng. Mech.
,
139
(
12
), pp.
1714
1723
.
47.
Kondo
,
D.
,
Welemane
,
H.
, and
Cormery
,
F.
,
2007
, “
Basic Concepts and Models in Continuum Damage Mechanics
,”
Revue européenne de génie civil
,
11
(
7–8
), pp.
927
943
.
48.
Awaja
,
F.
,
Zhang
,
S.
,
Tripathi
,
M.
,
Nikiforov
,
A.
, and
Pugno
,
N.
,
2016
, “
Cracks, Microcracks and Fracture in Polymer Structures: Formation, Detection, Autonomic Repair
,”
Prog. Mater. Sci.
,
83
, pp.
536
573
.
49.
Tijssens
,
M.
,
Van der Giessen
,
E.
, and
Sluys
,
L.
,
2000
, “
Simulation of Mode I Crack Growth in Polymers by Crazing
,”
Int. J. Solids Struct.
,
37
(
48–50
), pp.
7307
7327
.
50.
Chen
,
W.
,
Lu
,
F.
, and
Cheng
,
M.
,
2002
, “
Tension and Compression Tests of Two Polymers Under Quasi-Static and Dynamic Loading
,”
Polym. Test.
,
21
(
2
), pp.
113
121
.
51.
Zhang
,
J.
,
Kikuchi
,
N.
,
Li
,
V.
,
Yee
,
A.
, and
Nusholtz
,
G.
,
1998
, “
Constitutive Modeling of Polymeric Foam Material Subjected to Dynamic Crash Loading
,”
Inter. J. Impact Eng.
,
21
(
5
), pp.
369
386
.
52.
Abaqus
,
G.
,
2011
,
Abaqus 6.11.
,
Dassault Systemes Simulia Corporation
,
Providence, RI
.
53.
Bažant
,
Z. P.
,
Adley
,
M. D.
,
Carol
,
I.
,
Jirásek
,
M.
,
Akers
,
S. A.
,
Rohani
,
B.
,
Cargile
,
J. D.
, and
Caner
,
F. C.
,
2000
, “
Large-Strain Generalization of Microplane Model for Concrete and Application
,”
J. Eng. Mech.
,
126
(
9
), pp.
971
980
.
54.
Campanale
,
C.
,
Savino
,
I.
,
Pojar
,
I.
,
Massarelli
,
C.
, and
Uricchio
,
V. F.
,
2020
, “
A Practical Overview of Methodologies for Sampling and Analysis of Microplastics in Riverine Environments
,”
Sustainability
,
12
(
17
), p.
6755
.
55.
Xue
,
J.
, and
Kirane
,
K.
,
2019
, “
Strength Size Effect and Post-Peak Softening in Textile Composites Analyzed by Cohesive Zone and Crack Band Models
,”
Eng. Fract. Mech.
,
212
, pp.
106
122
.
56.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matériaux et construction
,
16
(
3
), pp.
155
177
.
57.
Abdullah
,
T.
, and
Kirane
,
K.
,
2021
, “
Continuum Damage Modeling of Dynamic Crack Velocity, Branching, and Energy Dissipation in Brittle Materials
,”
Inter. J. Fract.
,
229
(
1
), pp.
15
37
.
58.
Ayatollahi
,
M.
,
Shadlou
,
S.
, and
Shokrieh
,
M.
,
2011
, “
Fracture Toughness of Epoxy/Multi-walled Carbon Nanotube Nano-composites Under Bending and Shear Loading Conditions
,”
Mater. Des.
,
32
(
4
), pp.
2115
2124
.
59.
Qiao
,
Y.
,
Zhang
,
Q.
, and
Salviato
,
M.
,
2020
, “
Effects of In-Situ Stress State on the Plastic Deformation, Fracture, and Size Scaling of Thermoset Polymers and Related Fiber-Reinforced Composites
,”
Proceedings to 35th Annual Technical Conference on Composite Materials, 2020
,
Virtual
,
Sept. 14–17
.
60.
National Institute of Environmental Health Sciences
, “
Bisphenol A (BPA)
,”
National Institute of Environmental Health Sciences
,
Rockville, MD
. https://www.niehs.nih.gov/health/topics/agents/sya-bpa
61.
Vaziri
,
M.
,
Stott
,
F.
, and
Spurr
,
R.
,
1988
, “
Studies of the Friction of Polymeric Materials
,”
Wear
,
122
(
3
), pp.
313
327
.
62.
Bueche
,
A.
, and
Flom
,
D.
,
1959
, “
Surface Friction and Dynamic Mechanical Properties of Polymers
,”
Wear
,
2
(
3
), pp.
168
182
.
63.
Mulvihill
,
D. M.
,
Kartal
,
M. E.
,
Nowell
,
D.
, and
Hills
,
D. A.
,
2011
, “
An Elastic–Plastic Asperity Interaction Model for Sliding Friction
,”
Tribol. Int.
,
44
(
12
), pp.
1679
1694
.
64.
Kaleli
,
N.
,
Sarac
,
D.
,
Külünk
,
S.
, and
Öztürk
,
Ö.
,
2018
, “
Effect of Different Restorative Crown and Customized Abutment Materials on Stress Distribution in Single Implants and Peripheral Bone: A Three-Dimensional Finite Element Analysis Study
,”
J. Prosthet. Dent.
,
119
(
3
), pp.
437
445
.
65.
Greaves
,
G. N.
,
Greer
,
A. L.
,
Lakes
,
R. S.
, and
Rouxel
,
T.
,
2011
, “
Poisson’s Ratio and Modern Materials
,”
Nat. Mater.
,
10
(
11
), pp.
823
837
.
66.
Tobolsky
,
A.
, and
Eyring
,
H.
,
1943
, “
Mechanical Properties of Polymeric Materials
,”
J. Chem. Phys.
,
11
(
3
), pp.
125
134
.
67.
Jerabek
,
M.
,
Major
,
Z.
, and
Lang
,
R. W.
,
2010
, “
Uniaxial Compression Testing of Polymeric Materials
,”
Polym. Test.
,
29
(
3
), pp.
302
309
.
68.
Friedrich
,
K.
,
1980
, “
Observation of Shear Bands in Crystalline, Spherulitic Polypropylene Under Compression at Low Temperatures
,”
J. Mater. Sci.
,
15
(
1
), pp.
258
262
.
69.
Rudnicki
,
J. W.
, and
Rice
,
J.
,
1975
, “
Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
371
394
.
70.
Yu
,
T.
,
Teng
,
J.
,
Wong
,
Y.
, and
Dong
,
S.
,
2010
, “
Finite Element Modeling of Confined Concrete—I: Drucker–Prager Type Plasticity Model
,”
Eng. Struct.
,
32
(
3
), pp.
665
679
.
71.
Systèmes
,
D.
, et al
,
2012
,
Abaqus 6.12 Theory Manual
,
Dassault Systèmes Simulia Corp.
,
Providence, RI
.
72.
Morelle
,
X.
,
Chevalier
,
J.
,
Bailly
,
C.
,
Pardoen
,
T.
, and
Lani
,
F.
,
2017
, “
Mechanical Characterization and Modeling of the Deformation and Failure of the Highly Crosslinked Rtm6 Epoxy Resin
,”
Mech. Time-Dependent Mater.
,
21
(
3
), pp.
419
454
.
73.
Chang
,
B.
,
Wang
,
X.
,
Long
,
Z.
,
Li
,
Z.
,
Gu
,
J.
,
Ruan
,
S.
, and
Shen
,
C.
,
2018
, “
Constitutive Modeling for the Accurate Characterization of the Tension Behavior of Peek Under Small Strain
,”
Polym. Test.
,
69
, pp.
514
521
.
74.
Bažant
,
Z. P.
, and
Nguyen
,
H. T.
,
2023
, “
Proposal of M-Index for Rating Fracture and Damage Models by Their Ability to Represent a Set of Distinctive Experiments
,”
J. Eng. Mech.
,
149
(
8
), p.
04023047
.
You do not currently have access to this content.