Abstract

Topology optimization is a powerful tool for structural design, while its computational cost is quite high due to the large number of design variables, especially for multilateral systems. Herein, an incremental interpolation approach with discrete cosine series expansion (DCSE) is established for multilateral topology optimization. A step function with shape coefficients (i.e., ensuring that no extra variables are required as the number of materials increases) and the use of the DCSE together reduces the number of variables (e.g., from 8400 to 120 for the optimization of the clamped–clamped beam with four materials). Remarkably, the proposed approach can effectively bypass the checkerboard problem without using any filter. The enhanced computational efficiency (e.g., a ∼89.2% reduction in computation time from 439.1 s to 47.4 s) of the proposed approach is validated via both 2D and 3D numerical cases.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhang
,
X.
,
Wu
,
K.
,
Ni
,
Y.
, and
He
,
L.
,
2022
, “
Anomalous Inapplicability of Nacre-Like Architectures as Impact-Resistant Templates in a Wide Range of Impact Velocities
,”
Nat. Commun.
,
13
(
1
), p.
7719
.
2.
Wang
,
Z.
,
Bo
,
R.
,
Bai
,
H.
,
Cao
,
S.
,
Wang
,
S.
,
Chang
,
J.
,
Lan
,
Y.
,
Li
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Flexible Impact-Resistant Composites With Bioinspired Three-Dimensional Solid–Liquid Lattice Designs
,”
ACS Appl. Mater. Interfaces
,
15
(
18
), pp.
22553
22562
.
3.
Wang
,
S.
,
Wang
,
Z.
,
Wang
,
B.
,
Liu
,
Z.
,
Ni
,
Y.
,
Lai
,
W.
,
Jiang
,
S.
, and
Huang
,
Y.
,
2024
, “
Experimental Study of Solid-Liquid Origami Composite Structures With Improved Impact Resistance
,”
Theor. Appl. Mech. Lett.
,
14
(
2
), p.
100508
.
4.
Xu
,
M.
,
Zhao
,
Z.
,
Wang
,
P.
,
Zhang
,
Y.
,
Guo
,
X.
,
Lei
,
H.
, and
Fang
,
D.
,
2022
, “
Planar Bi-Metallic Lattice With Tailorable Coefficient of Thermal Expansion
,”
Acta Mech. Sin.
,
38
(
7
), p.
421546
.
5.
Wang
,
Y.
,
Geng
,
L.
,
Lian
,
Y.
,
Xu
,
M.
, and
Fang
,
D.
,
2022
, “
Three-Dimensional Assembled Dual-Material Lattice With Tailorable Thermal Expansion: Design Method, Modeling, and Testing
,”
Compos. Struct.
,
293
, p.
115724
.
6.
Wang
,
S.
,
Ma
,
Y.
,
Deng
,
Z.
, and
Wu
,
X.
,
2022
, “
Two Elastically Equivalent Compound Truss Lattice Materials With Controllable Anisotropic Mechanical Properties
,”
Int. J. Mech. Sci.
,
213
, p.
106879
.
7.
Wang
,
S.
,
Ma
,
Y.
,
Deng
,
Z.
,
Zhang
,
S.
, and
Cai
,
J.
,
2020
, “
Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties of 3D Printed Polylactic Acid Materials
,”
Polym. Test.
,
86
, p.
106483
.
8.
Zhang
,
H.
,
Cheng
,
X.
,
Yan
,
D.
,
Zhang
,
Y.
, and
Fang
,
D.
,
2019
, “
A Nonlinear Mechanics Model of Soft Network Metamaterials With Unusual Swelling Behavior and Tunable Phononic Band Gaps
,”
Compos. Sci. Technol.
,
183
, p.
107822
.
9.
Cheng
,
J.
,
Wang
,
R.
,
Sun
,
Z.
,
Liu
,
Q.
,
He
,
X.
,
Li
,
H.
,
Ye
,
H.
, et al
,
2022
, “
Centrifugal Multimaterial 3D Printing of Multifunctional Heterogeneous Objects
,”
Nat. Commun.
,
13
(
1
), p.
7931
.
10.
Wang
,
H.
,
Zhang
,
Z.
,
Fu
,
K.
, and
Li
,
Y.
,
2023
, “
Four-Dimensionally Printed Continuous Carbon Fiber-Reinforced Shape Memory Polymer Composites With Diverse Deformation Based on an Inhomogeneous Temperature Field
,”
Polymers
,
15
(
18
), p.
3740
.
11.
Forte
,
C. T.
,
Montgomery
,
S. M.
,
Yue
,
L.
,
Hamel
,
C. M.
, and
Qi
,
H. J.
,
2023
, “
Grayscale Digital Light Processing Gradient Printing for Stress Concentration Reduction and Material Toughness Enhancement
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071003
.
12.
Liu
,
L.-Y.
,
Yang
,
Q.-S.
,
Liu
,
X.
, and
Shang
,
J.-J.
,
2021
, “
Modeling Damage Evolution of Graphene/Aluminum Composites Considering Crystal Cracking and Interface Failure
,”
Compos. Struct.
,
267
, p.
113863
.
13.
Ye
,
H.
,
Liu
,
Q.
,
Cheng
,
J.
,
Li
,
H.
,
Jian
,
B.
,
Wang
,
R.
,
Sun
,
Z.
,
Lu
,
Y.
, and
Ge
,
Q.
,
2023
, “
Multimaterial 3D Printed Self-Locking Thick-Panel Origami Metamaterials
,”
Nat. Commun.
,
14
(
1
), p.
1607
.
14.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), p.
17019
.
15.
Gao
,
J.
,
Xiao
,
M.
,
Gao
,
L.
,
Yan
,
J.
, and
Yan
,
W.
,
2020
, “
Isogeometric Topology Optimization for Computational Design of Re-Entrant and Chiral Auxetic Composites
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112876
.
16.
Duan
,
S.
,
Xi
,
L.
,
Wen
,
W.
, and
Fang
,
D.
,
2020
, “
Mechanical Performance of Topology-Optimized 3D Lattice Materials Manufactured via Selective Laser Sintering
,”
Compos. Struct.
,
238
, p.
111985
.
17.
Pang
,
W.
,
Xu
,
S.
,
Wu
,
J.
,
Bo
,
R.
,
Jin
,
T.
,
Xiao
,
Y.
,
Liu
,
Z.
, et al
,
2022
, “
A Soft Microrobot With Highly Deformable 3D Actuators for Climbing and Transitioning Complex Surfaces
,”
Proc. Natl. Acad. Sci. U.S.A.
,
119
(
49
), p.
e2215028119
.
18.
Yue
,
L.
,
Macrae Montgomery
,
S.
,
Sun
,
X.
,
Yu
,
L.
,
Song
,
Y.
,
Nomura
,
T.
,
Tanaka
,
M.
, and
Jerry Qi
,
H.
,
2023
, “
Single-Vat Single-Cure Grayscale Digital Light Processing 3D Printing of Materials With Large Property Difference and High Stretchability
,”
Nat. Commun.
,
14
(
1
), p.
1251
.
19.
Bo
,
R.
,
Xu
,
S.
,
Yang
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Mechanically-Guided 3D Assembly for Architected Flexible Electronics
,”
Chem. Rev.
,
123
(
18
), pp.
11137
11189
.
20.
Cheng
,
X.
,
Fan
,
Z.
,
Yao
,
S.
,
Jin
,
T.
,
Lv
,
Z.
,
Lan
,
Y.
,
Bo
,
R.
, et al
,
2023
, “
Programming 3D Curved Mesosurfaces Using Microlattice Designs
,”
Science
,
379
(
6638
), pp.
1225
1232
.
21.
Wu
,
J.
,
Yao
,
S.
,
Zhang
,
H.
,
Man
,
W.
,
Bai
,
Z.
,
Zhang
,
F.
,
Wang
,
X.
,
Fang
,
D.
, and
Zhang
,
Y.
,
2021
, “
Liquid Crystal Elastomer Metamaterials With Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration
,”
Adv. Mater.
,
33
(
45
), p.
2106175
.
22.
Shuai
,
Y.
,
Zhao
,
J.
,
Bo
,
R.
,
Lan
,
Y.
,
Lv
,
Z.
, and
Zhang
,
Y.
,
2023
, “
A Wrinkling-Assisted Strategy for Controlled Interface Delamination in Mechanically-Guided 3D Assembly
,”
J. Mech. Phys. Solids
,
173
, p.
105203
.
23.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
24.
Tcherniak
,
D.
,
2002
, “
Topology Optimization of Resonating Structures Using SIMP Method
,”
Int. J. Numer. Methods Eng.
,
54
(
11
), pp.
1605
1622
.
25.
Bendsøe
,
M.
,
Sigmund
,
O.
,
Mokshagundam
,
S. P. L.
, and
Minocha
,
A.
,
2003
,
Topology Optimization: Theory, Method and Applications
,
Springer
,
Berlin
.
26.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
22
(
2
), pp.
116
124
.
27.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
28.
Wang
,
Y.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set-Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1570
1586
.
29.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Wu
,
J.
,
2018
, “
An Improved Parametric Level Set Method for Structural Frequency Response Optimization Problems
,”
Adv. Eng. Software
,
126
(
April
), pp.
75
89
.
30.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1997
,
Evolutionary Structural Optimization
,
Springer
,
London
.
31.
Xia
,
L.
,
Xia
,
Q.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2018
, “
Bi-Directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review
,”
Arch. Comput. Meth. Eng.
,
25
(
2
), pp.
437
478
.
32.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1243
1260
.
33.
Zhang
,
W.
,
Chen
,
J.
,
Zhu
,
X.
,
Zhou
,
J.
,
Xue
,
D.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
34.
Hu
,
X.
,
Li
,
Y.
, and
Ji
,
H.
,
2018
, “
A Nodal Finite Element Approximation of a Phase Field Model for Shape and Topology Optimization
,”
Appl. Math. Comput.
,
339
, pp.
675
684
.
35.
Yang
,
X.
, and
Li
,
M.
,
2018
, “
Discrete Multi-Material Topology Optimization Under Total Mass Constraint
,”
Comput. Aided Des.
,
102
, pp.
182
192
.
36.
Kundu
,
R. D.
,
Li
,
W.
, and
Zhang
,
X. S.
,
2022
, “
Multimaterial Stress-Constrained Topology Optimization With Multiple Distinct Yield Criteria
,”
Extreme Mech. Lett.
,
54
, p.
101716
.
37.
Sanders
,
E. D.
,
Aguiló
,
M. A.
, and
Paulino
,
G. H.
,
2018
, “
Multi-Material Continuum Topology Optimization With Arbitrary Volume and Mass Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
340
, pp.
798
823
.
38.
Keshavarzzadeh
,
V.
, and
James
,
K. A.
,
2019
, “
Robust Multiphase Topology Optimization Accounting for Manufacturing Uncertainty via Stochastic Collocation
,”
Struct. Multidisc. Optim.
,
60
(
6
), pp.
2461
2476
.
39.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
.
40.
Xue
,
T.
,
Wallin
,
T. J.
,
Menguc
,
Y.
,
Adriaenssens
,
S.
, and
Chiaramonte
,
M.
,
2020
, “
Machine Learning Generative Models for Automatic Design of Multi-Material 3D Printed Composite Solids
,”
Extreme Mech. Lett.
,
41
, p.
100992
.
41.
Lieu
,
Q. X.
, and
Lee
,
J.
,
2017
, “
A Multi-Resolution Approach for Multi-Material Topology Optimization Based on Isogeometric Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
272
302
.
42.
Park
,
J.
, and
Sutradhar
,
A.
,
2015
, “
A Multi-Resolution Method for 3D Multi-Material Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
571
586
.
43.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-Material Topology Optimization Using Ordered SIMP Interpolation
,”
Struct. Multidisc. Optim.
,
55
(
2
), pp.
477
491
.
44.
Liu
,
Y.
,
Wang
,
X.
,
Wang
,
L.
, and
Liu
,
D.
,
2019
, “
A Modified Leaky ReLU Scheme (MLRS) for Topology Optimization With Multiple Materials
,”
Appl. Math. Comput.
,
352
, pp.
188
204
.
45.
Zhou
,
P.
,
Du
,
J.
, and
,
Z.
,
2018
, “
A Generalized DCT Compression Based Density Method for Topology Optimization of 2D and 3D Continua
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
1
21
.
46.
Luo
,
Y.
, and
Bao
,
J.
,
2019
, “
A Material-Field Series-Expansion Method for Topology Optimization of Continuum Structures
,”
Comput. Struct.
,
225
, p.
106122
.
47.
Liu
,
H.
,
Yang
,
D.
,
Hao
,
P.
, and
Zhu
,
X.
,
2018
, “
Isogeometric Analysis Based Topology Optimization Design With Global Stress Constraint
,”
Comput. Methods Appl. Mech. Eng.
,
342
, pp.
625
652
.
You do not currently have access to this content.