Abstract

The buoyancy adjustment capability is crucial for underwater robots. Dielectric elastomer (DE) is promising to be designed as inflatable actuators to achieve quiet, fast, and effective buoyancy adjustment. However, the buoyancy adjustment of DE actuators is limited by voltage amplification and controllability. This paper presents to solve the limitation of the DE buoyancy adjustment actuator by magnetic enhancement. An actuator is designed with a two-stage buoyancy adjustment capability. The two-stage adjustment strategy allows the actuator to achieve higher buoyancy adjustment at low voltage and controllable buoyancy adjustment at high voltage, where the switch between the two stages is achieved by tuning the snap of the magnet. A theoretical model is developed to assess the performance of the actuator in the two stages and describe the snap behavior. The experiment results agree with the simulation, and the actuator demonstrates the ability to adjust attitude by changing buoyancy at high voltages and rapidly ascending at low voltages. The multiple buoyancy adjustment capabilities of this actuator have the potential to enable the underwater robot to fulfill various complex task demands.

References

1.
Katzschmann
,
R. K.
,
DelPreto
,
J.
,
MacCurdy
,
R.
, and
Rus
,
D.
,
2018
, “
Exploration of Underwater Life With an Acoustically Controlled Soft Robotic Fish
,”
Sci. Rob.
,
3
(
16
), p.
eaar3449
.
2.
Picardi
,
G.
,
Chellapurath
,
M.
,
Iacoponi
,
S.
,
Stefanni
,
S.
,
Laschi
,
C.
, and
Calisti
,
M.
,
2020
, “
Bioinspired Underwater Legged Robot for Seabed Exploration With Low Environmental Disturbance
,”
Sci. Rob.
,
5
(
42
), p.
eaaz1012
.
3.
Zhang
,
Y.
,
Ryan
,
J. P.
,
Hobson
,
B. W.
,
Kieft
,
B.
,
Romano
,
A.
,
Barone
,
B.
,
Preston
,
C. M.
, et al
,
2021
, “
A System of Coordinated Autonomous Robots for Lagrangian Studies of Microbes in the Oceanic Deep Chlorophyll Maximum
,”
Sci. Rob.
,
6
(
50
), p.
eabb9138
.
4.
Yoerger
,
D. R.
,
Govindarajan
,
A. F.
,
Howland
,
J. C.
,
Llopiz
,
J. K.
,
Wiebe
,
P. H.
,
Curran
,
M.
,
Fujii
,
J.
, et al
,
2021
, “
A Hybrid Underwater Robot for Multidisciplinary Investigation of the Ocean Twilight Zone
,”
Sci. Rob.
,
6
(
55
), p.
eabe1901
.
5.
Wang
,
R.
,
Zhang
,
C.
,
Zhang
,
Y.
,
Tan
,
W.
,
Chen
,
W.
, and
Liu
,
L.
,
2023
, “
Soft Underwater Swimming Robots Based on Artificial Muscle
,”
Adv. Mater. Technol.
,
8
(
4
), p.
2200962
.
6.
Fang
,
J.
,
Zhuang
,
Y.
,
Liu
,
K.
,
Chen
,
Z.
,
Liu
,
Z.
,
Kong
,
T.
,
Xu
,
J.
, and
Qi
,
C.
,
2022
, “
A Shift From Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments
,”
Adv. Sci.
,
9
(
8
), p.
2104347
.
7.
Costello
,
J. H.
,
Colin
,
S. P.
,
Dabiri
,
J. O.
,
Gemmell
,
B. J.
,
Lucas
,
K. N.
, and
Sutherland
,
K. R.
,
2021
, “
The Hydrodynamics of Jellyfish Swimming
,”
Annu. Rev. Marine Sci.
,
13
(
1
), pp.
375
396
.
8.
Wang
,
Y.
,
Zhang
,
P.
,
Huang
,
H.
, and
Zhu
,
J.
,
2022
, “
Bio-Inspired Transparent Soft Jellyfish Robot
,”
Soft Rob.
,
10
(
3
), pp.
590
600
.
9.
Godaba
,
H.
,
Li
,
J.
,
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
624
631
.
10.
Wang
,
S.
, and
Chen
,
Z.
,
2021
, “
Modeling of Jellyfish-Inspired Robot Enabled by Dielectric Elastomer
,”
Int. J. Intell. Rob. Appl.
,
5
(
3
), pp.
287
299
.
11.
Frame
,
J.
,
Lopez
,
N.
,
Curet
,
O.
, and
Engeberg
,
E. D.
,
2018
, “
Thrust Force Characterization of Free-Swimming Soft Robotic Jellyfish
,”
Bioinspir. Biomim.
,
13
(
6
), p.
064001
.
12.
Zhang
,
P.
,
Zhang
,
C.
,
Wang
,
S.
, and
Chen
,
Z.
,
2020
, “
Motion Characteristic and Analysis of Bionic Jellyfish With Fluid-Driven Soft Actuator
,”
Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Kristiansand, Norway
,
Nov. 9–13
, pp.
1684
1689
.
13.
Joshi
,
A.
,
Kulkarni
,
A.
, and
Tadesse
,
Y.
,
2019
, “
FludoJelly: Experimental Study on Jellyfish-Like Soft Robot Enabled by Soft Pneumatic Composite (SPC)
,”
Robotics
,
8
(
3
), p.
56
.
14.
Almubarak
,
Y.
,
Punnoose
,
M.
,
Maly
,
N. X.
,
Hamidi
,
A.
, and
Tadesse
,
Y.
,
2020
, “
KryptoJelly: A Jellyfish Robot With Confined, Adjustable Pre-Stress, and Easily Replaceable Shape Memory Alloy NiTi Actuators
,”
Smart Mater. Struct.
,
29
(
7
), p.
075011
.
15.
Zhou
,
Y.
,
Jin
,
H.
,
Liu
,
C.
,
Dong
,
E.
,
Xu
,
M.
, and
Yang
,
J.
,
2016
, “
A Novel Biomimetic Jellyfish Robot Based on a Soft and Smart Modular Structure (SMS)
,”
Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
,
Dec. 3–7
, pp.
708
713
.
16.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspir. Biomim.
,
6
(
3
), p.
036004
.
17.
Mallya
,
N.
, and
Haussener
,
S.
,
2021
, “
Buoyancy-Driven Melting and Solidification Heat Transfer Analysis in Encapsulated Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
164
, p.
120525
.
18.
Yamamoto
,
H.
, and
Shibuya
,
K.
,
2016
, “New Small Buoyancy Control Device With Silicone Rubber for Underwater Vehicles,”
Advances in Cooperative Robotics
,
World Scientific
,
Singapore
, pp.
258
265
.
19.
Hou
,
J.
,
Zou
,
W.
,
Li
,
Z.
,
Gong
,
Y.
,
Burnashev
,
V.
, and
Ning
,
D.
,
2020
, “
Development and Experiments of an Electrothermal Driven Deep-Sea Buoyancy Control Module
,”
Micromachines (Basel)
,
11
(
11
), p.
1017
.
20.
Byun
,
J.
,
Park
,
M.
,
Baek
,
S.-M.
,
Yoon
,
J.
,
Kim
,
W.
,
Lee
,
B.
,
Hong
,
Y.
, and
Cho
,
K.-J.
,
2021
, “
Underwater Maneuvering of Robotic Sheets Through Buoyancy-Mediated Active Flutter
,”
Sci. Rob.
,
6
(
53
), p.
eabe0637
.
21.
Kang
,
B.
,
Lee
,
Y.
,
Piao
,
T.
,
Ding
,
Z.
, and
David Wang
,
W.
,
2021
, “
Robotic Soft Swim Bladder Using Liquid–Vapor Phase Transition
,”
Mater. Horiz.
,
8
(
3
), pp.
939
947
.
22.
Lee
,
J.
,
Yoon
,
Y.
,
Park
,
H.
,
Choi
,
J.
,
Jung
,
Y.
,
Ko
,
S. H.
, and
Yeo
,
W.-H.
,
2022
, “
Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion
,”
Adv. Intell. Syst.
,
4
(
7
), p.
2100271
.
23.
Huang
,
Y.
,
Hu
,
W.
,
Wang
,
X.
,
Guo
,
X.
,
Hao
,
C.
,
Zhao
,
Y.
,
Zeng
,
X.
, and
Liu
,
P.
,
2019
, “
A Low-Voltage Graphene/Ag-Based Phase Transition-Controlled Force Actuator
,”
Compos. Part B: Eng.
,
174
, p.
106912
.
24.
Keow
,
A. L. J.
,
Zuo
,
W.
,
Ghorbel
,
F.
, and
Chen
,
Z.
,
2022
, “
Reversible Fuel Cell Enabled Underwater Buoyancy Control
,”
Mechatronics
,
86
, p.
102865
.
25.
Um
,
T. I.
,
Chen
,
Z.
, and
Bart-Smith
,
H.
,
2011
, “
A Novel Electroactive Polymer Buoyancy Control Device for Bio-Inspired Underwater Vehicles
,”
Proceedings of the 2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
172
177
.
26.
Godaba
,
H.
,
Foo
,
C. C.
,
Zhang
,
Z. Q.
,
Khoo
,
B. C.
, and
Zhu
,
J.
,
2014
, “
Giant Voltage-Induced Deformation of a Dielectric Elastomer Under a Constant Pressure
,”
Appl. Phys. Lett.
,
105
(
11
), p.
112901
.
27.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
28.
Cooley
,
C. G.
, and
Lowe
,
R. L.
,
2023
, “
Leveraging Dynamics-Induced Snap-Through Instabilities to Access Giant Deformations in Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
90
(
8
), p.
084501
.
29.
Mao
,
G.
,
Xiang
,
Y.
,
Huang
,
X.
,
Hong
,
W.
,
Lu
,
T.
, and
Qu
,
S.
,
2018
, “
Viscoelastic Effect on the Wrinkling of an Inflated Dielectric-Elastomer Balloon
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071003
.
30.
Li
,
Z.
,
Wang
,
Y.
,
Foo
,
C. C.
,
Godaba
,
H.
,
Zhu
,
J.
, and
Yap
,
C. H.
,
2017
, “
The Mechanism for Large-Volume Fluid Pumping via Reversible Snap-Through of Dielectric Elastomer
,”
J. Appl. Phys.
,
122
(
8
), p.
084503
.
31.
Li
,
Z.
,
Zhu
,
J.
,
Foo
,
C. C.
, and
Yap
,
C. H.
,
2017
, “
A Robust Dual-Membrane Dielectric Elastomer Actuator for Large Volume Fluid Pumping via Snap-Through
,”
Appl. Phys. Lett.
,
111
(
21
), p.
212901
.
32.
Wang
,
Y.
,
Li
,
Z.
,
Qin
,
L.
,
Caddy
,
G.
,
Yap
,
C. H.
, and
Zhu
,
J.
,
2018
, “
Dielectric Elastomer Fluid Pump of High Pressure and Large Volume Via Synergistic Snap-Through
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101003
.
33.
Zhang
,
H.
,
Wang
,
Y.
,
Godaba
,
H.
,
Khoo
,
B. C.
,
Zhang
,
Z.
, and
Zhu
,
J.
,
2017
, “
Harnessing Dielectric Breakdown of Dielectric Elastomer to Achieve Large Actuation
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121011
.
34.
Zhang
,
H.
,
Zhou
,
Y.
,
Dai
,
M.
, and
Zhang
,
Z.
,
2018
, “
A Novel Flying Robot System Driven by Dielectric Elastomer Balloon Actuators
,”
J. Intell. Mater. Syst. Struct.
,
29
(
11
), pp.
2522
2527
.
35.
Liu
,
B.
,
Chen
,
F.
,
Wang
,
S.
,
Fu
,
Z.
,
Cheng
,
T.
, and
Li
,
T.
,
2017
, “
Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091005
.
36.
Wang
,
Y.
,
Loh
,
L. Y. W.
,
Gupta
,
U.
,
Foo
,
C. C.
, and
Zhu
,
J.
,
2020
, “
Bio-Inspired Soft Swim Bladders of Large Volume Change Using Dual Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041007
.
37.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
38.
Lee
,
H.
,
Jang
,
Y.
,
Choe
,
J. K.
,
Lee
,
S.
,
Song
,
H.
,
Lee
,
J. P.
,
Lone
,
N.
, and
Kim
,
J.
,
2020
, “
3D-Printed Programmable Tensegrity for Soft Robotics
,”
Sci. Rob.
,
5
(
45
), p.
eaay9024
.
39.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
40.
Wang
,
Q.
,
Wu
,
Z.
,
Huang
,
J.
,
Du
,
Z.
,
Yue
,
Y.
,
Chen
,
D.
,
Li
,
D.
, and
Su
,
B.
,
2021
, “
Integration of Sensing and Shape-Deforming Capabilities for a Bioinspired Soft Robot
,”
Compos. Part B: Eng.
,
223
, p.
109116
.
41.
Ren
,
Z.
,
Hu
,
W.
,
Dong
,
X.
, and
Sitti
,
M.
,
2019
, “
Multi-Functional Soft-Bodied Jellyfish-Like Swimming
,”
Nat. Commun.
,
10
(
1
), p.
2703
.
42.
Loew
,
P.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2018
, “
A Novel Biasing Mechanism for Circular Out-of-Plane Dielectric Actuators Based on Permanent Magnets
,”
Mechatronics
,
56
, pp.
48
57
.
43.
Cao
,
C.
,
Gao
,
X.
, and
Conn
,
A. T.
,
2019
, “
A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900128
.
44.
Zhao
,
Y.-H.
,
Li
,
W.-B.
,
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2018
, “
Performance Improvement of Planar Dielectric Elastomer Actuators by Magnetic Modulating Mechanism
,”
Smart Mater. Struct.
,
27
(
6
), p.
065007
.
45.
Li
,
X.-Q.
,
Li
,
W.-B.
,
Zhang
,
W.-M.
,
Zou
,
H.-X.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2017
, “
Magnetic Force Induced Tristability for Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
26
(
10
), p.
105007
.
46.
Cao
,
C.
,
Gao
,
X.
, and
Conn
,
A. T.
,
2019
, “
A Compliantly Coupled Dielectric Elastomer Actuator Using Magnetic Repulsion
,”
Appl. Phys. Lett.
,
114
(
1
), p.
011904
.
47.
Li
,
B.
,
Jia
,
F.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2011
, “
Surface Wrinkling Patterns on a Core-Shell Soft Sphere
,”
Phys. Rev. Lett.
,
106
(
23
), p.
234301
.
48.
Shim
,
J.
,
Perdigou
,
C.
,
Chen
,
E. R.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
16
), pp.
5978
5983
.
You do not currently have access to this content.