Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents a closed-form solution for the energy release rate of face/core debonds in the mode II end-notched flexure (ENF) sandwich configuration. The finite-length sandwich specimen is considered to have a “debonded” region and a “joined” region. In the later, the interface between the top face and the substrate (core and bottom face) is modeled by an elastic foundation, which is a uniform distribution of shear and normal springs. Based on the Timoshenko beam theory, the solution for a general asymmetric sandwich construction is derived. The energy release rate expression is derived via the J-integral. Another closed-form expression for the energy release rate is derived from the energy released by a differential spring as the debond propagates. In this closed-form solution, there is no fitting and everything, including the foundation constants, are given in a closed form. Results are produced for a range of face/core stiffness ratios and debond length/core thickness ratios and are compared with the corresponding ones from a finite element solution. A very good agreement is observed except for small debond lengths versus specimen thickness.

References

1.
Carlsson
,
L. A.
, and
Kardomateas
,
G. A.
,
2011
,
Structural and Failure Mechanics of Sandwich Composites
,
Springer
,
New York
.
2.
Russell
,
A. J.
, and
Street
,
K. N.
,
1982
, “Factors Affecting the Interlaminar Fracture Energy OD Graphite/Epoxy Laminates,”
Progress in Science and Technology of Composites
,
T.
Hayashi
et al
, eds.,
ICCM-IV
,
Tokyo
, p.
278
.
3.
Kanninen
,
M. F.
,
1973
, “
An Augmented Double Cantilever Beam Model for Studying Crack Propagation and Arrest
,”
Inter. J. Fract.
,
9
(
1
), pp.
83
92
.
4.
Saseendran
,
V.
,
Carlsson
,
L. A.
, and
Berggreen
,
C.
,
2018
, “
Shear and Foundation Effects on Crack Root Rotation and Mode-Mixity in Moment- and Force-Loaded Single Cantilever Beam Sandwich Specimen
,”
J. Compos. Mater.
,
52
(
18
), pp.
2537
2547
.
5.
Kardomateas
,
G. A.
,
Pichler
,
N.
, and
Yuan
,
Z.
,
2019
, “
Elastic Foundation Solution for the Energy Release Rate and Mode Partitioning of Face/Core Debonds in Sandwich Composites
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
121001
.
6.
Kardomateas
,
G. A.
, and
Yuan
,
Z.
,
2021
, “
Closed Form Solution for the Energy Release Rate and Mode Partitioning of the Single Cantilever Beam (SCB) Specimen Based on an Elastic Foundation Analysis
,”
J. Sand. Struct. Mater.
,
23
(
8
), pp.
3495
3518
.
7.
Niranjan Babu
,
S.
, and
Kardomateas
,
G. A.
,
2022
, “
Elastic Foundation Solution for Face/Core Debonds in Sandwich Composites by Use of Timoshenko Beam Theory
,”
AIAA. J.
,
60
(
6
), pp.
3377
3388
.
8.
Niranjan Babu
,
S.
, and
Kardomateas
,
G. A.
,
2023
, “
Timoshenko Beam Theory Solution for the Energy Release Rate and Mode Partitioning of the Sandwich SCB Specimen
,”
AIAA. J.
,
61
(
12
), pp.
5635
5644
.
9.
Okegbu
,
D. O.
, and
Kardomateas
,
G. A.
,
2024
, “
Large Deflection Effects on the Energy Release Rate and Mode Partitioning of the Single Cantilever Beam Sandwich Debond Configuration
,”
ASME J. Appl. Mech.
,
91
(
1
), p.
011001
.
10.
Corleto
,
C. R.
, and
Hogan
,
H. A.
,
1995
, “
Energy Release Rates for the Enf Specimen Using a Beam on an Elastic Foundation
,”
J. Compos. Mater.
,
29
(
11
), pp.
1420
1436
.
11.
Kardomateas
,
G. A.
,
Yuan
,
Z.
, and
Carlsson
,
L. A.
,
2018
, “
Elastic Foundation Constants for Sandwich Composites
,”
AIAA. J.
,
56
(
10
), pp.
4169
4179
.
12.
Phan
,
C. N.
,
Frostig
,
Y.
, and
Kardomateas
,
G. A.
,
2012
, “
Analysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidity-Extended High-Order Sandwich Panel Theory Versus Elasticity
,”
ASME J. Appl. Mech.
,
79
(
4
), p.
041001
.
13.
Kardomateas
,
G. A.
, and
Simitses
,
G. J.
,
2005
, “
Bucking of Long Sandwich Cylindrical Shells Under External Pressure
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
493
499
.
14.
Huang
,
H.
, and
Kardomateas
,
G. A.
,
2002
, “
Buckling and Initial Postbuckling Behavior of Sandwich Beams Including Transverse Shear
,”
AIAA. J.
,
40
(
11
), pp.
2331
2335
.
15.
Carlsson
,
L. A.
,
Sendlein
,
L. S.
, and
Merry
,
S. L.
,
1991
, “
Characterization of Face Sheet/Core Shear Fracture of Composite Sandwich Beams
,”
J. Compos. Mater.
,
25
(
1
), pp.
101
116
.
16.
Gillespie
,
J. W.
,
Carlsson
,
L. A.
, and
Pipes
,
R. B.
,
1986
, “
Finite Element Analysis of the End Notched Flexure Specimen for Measuring Mode II Fracture Toughness
,”
Compos. Sci. Technol.
,
27
(
3
), pp.
177
197
.
17.
Symbolic Math Toolbox
,
2024
, The MathWorks Inc., Natick, MA, https://www.mathworks.com/help/symbolic/index.html
18.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
You do not currently have access to this content.