Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Piezoelectric semiconductors (PSCs) find widespread applications in smart electronic devices due to their unique combination of piezoelectric and semiconductive properties. With the increasing demand for smaller and more efficient electronic devices, the performance of their components needs to be carefully optimized, especially when they are scaled down to nanoscale sizes. Pioneering studies have demonstrated that surface elastic properties play a significant role in determining the mechanical performance of nanoscale materials and structures. Therefore, it is important to comprehensively investigate the effects of surface elasticity, including surface residual stress, surface membrane stiffness, and surface bending stiffness, on the electromechanical responses of a PSC nanoplate. Additionally, it is crucial to examine the influence of flexoelectricity at the nanoscale. Our results demonstrate that surface elastic properties predominantly impact mechanical performance, while the flexoelectric effect plays a more prominent role in electric field and redistribution of charge carriers. In particular, the significance of surface bending rigidity, which was often overlooked in previous literature, becomes pronounced when the thickness of a PSC nanoplate is less than 7 nm. Furthermore, the dependence of natural vibration frequency on surface elastic moduli, flexoelectricity, and size is, respectively, explored. The redistributions of electric potential and charge carriers across the cross section are also evidently affected. Our findings provide valuable insights for improving the performance of electronic devices that utilize nanoscale PSCs.

References

1.
Dahiya
,
R. S.
,
Metta
,
G.
,
Valle
,
M.
,
Adami
,
A.
, and
Lorenzelli
,
L.
,
2009
, “
Piezoelectric Oxide Semiconductor Field Effect Transistor Touch Sensing Devices
,”
Appl. Phys. Lett.
,
95
(
3
), p.
034105
.
2.
Wang
,
X. D.
,
Zhou
,
J.
,
Song
,
J. H.
,
Liu
,
J.
,
Xu
,
N. S.
, and
Wang
,
Z. L.
,
2006
, “
Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single Nanowire
,”
Nano Lett.
,
6
(
12
), pp.
2768
2772
.
3.
Wang
,
Z. L.
, and
Song
,
J. H.
,
2006
, “
Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,”
Science
,
312
(
5771
), pp.
242
246
.
4.
Wang
,
Z. L.
,
2012
,
Piezotronics and Piezo-Phototronics
,
Springer
,
Berlin/Heidelberg
.
5.
Song
,
J. H.
,
Zhou
,
J.
, and
Wang
,
Z. L.
,
2006
, “
Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire: A Technology for Harvesting Electricity From the Environment
,”
Nano Lett.
,
6
(
8
), pp.
1656
1662
.
6.
Yang
,
W. L.
,
Hu
,
Y. T.
, and
Yang
,
J. S.
,
2019
, “
Transient Extensional Vibration in a ZnO Piezoelectric Semiconductor Nanofiber Under a Suddenly Applied End Force
,”
Mater. Res. Express
,
6
(
2
), p.
025902
.
7.
Zhou
,
X. F.
,
Shen
,
B.
,
Lyubartsev
,
A.
,
Zhai
,
J. W.
, and
Hedin
,
N.
,
2022
, “
Semiconducting Piezoelectric Heterostructures for Piezo- and Piezophotocatalysis
,”
Nano Energy
,
96
, p.
107141
.
8.
Yang
,
J. S.
,
2020
,
Analysis of Piezotronics Semiconductor Structures
,
Springer Nature Switzerland AG
,
Berlin
.
9.
Fang
,
X. Q.
,
Duan
,
J. Q.
,
Zhu
,
C. S.
, and
Liu
,
J. X.
,
2023
, “
Vibration Analysis of Piezoelectric Semiconductor Beams With Size-Dependent Damping Characteristic
,”
Mater. Today Commun.
,
36
, p.
106929
.
10.
Tagantsev
,
A. K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), pp.
5883
5889
.
11.
Cross
,
L. E.
,
2006
, “
Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients
,”
J. Mater. Sci.
,
41
(
1
), pp.
53
63
.
12.
Narvaez
,
J.
, and
Catalan
,
G.
,
2014
, “
Origin of the Enhanced Flexoelectricity of Relax or Ferroelectrics
,”
Appl. Phys. Lett.
,
104
(
16
), p.
162903
.
13.
Deng
,
Q.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
(
SI
), pp.
209
227
.
14.
Grasinger
,
M.
,
Mozaffari
,
K.
, and
Sharma
,
P.
,
2021
, “
Flexoelectricity in Soft Elastomers and the Molecular Mechanisms Underpinning the Design and Emergence of Giant Flexoelectricity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
21
), p.
e2102477118
.
15.
Mozaffari
,
K.
,
Ahmadpoor
,
F.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2023
, “
A Minimal Physics-Based Model for Musical Perception
,”
Proc. Natl. Acad. Sci. U. S. A.
,
5
(
5
), p.
e2216146120
.
16.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
17.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
18.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.
19.
Liu
,
L. P.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties
,”
Phys. Rev. E
,
87
(
3
), p.
032715
.
20.
Zhang
,
C. L.
,
Zhang
,
L. L.
,
Shen
,
X. D.
, and
Chen
,
W. Q.
,
2016
, “
Enhancing Magnetoelectric Effect in Multiferroic Composite Bilayers Via Flexoelectricity
,”
J. Appl. Phys.
,
119
(
13
), p.
134102
.
21.
Sharma
,
N. D.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
.
22.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
23.
Narvaez
,
J.
,
Vasquez-Sancho
,
F.
, and
Catalan
,
G.
,
2016
, “
Enhanced Flexoelectric-Like Response in Oxide Semiconductors
,”
Nature
,
538
(
7624
), pp.
219
221
.
24.
Wang
,
L.
,
Liu
,
S.
,
Feng
,
X.
,
Zhang
,
C.
,
Zhu
,
L.
,
Zhai
,
J.
,
Qin
,
Y.
, and
Wang
,
Z. L.
,
2020
, “
Flexoelectronics of Centrosymmetric Semiconductors
,”
Nat. Nanotechnol.
,
15
(
8
), pp.
661
667
.
25.
Yudin
,
P. V.
, and
Tagantsev
,
A. K.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
26.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y. W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
27.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2015
, “
Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes
,”
Nanoscale
,
7
(
40
), pp.
16555
16570
.
28.
Wang
,
K. F.
, and
Wang
,
B. L.
,
2018
, “
Electrostatic Potential in a Bent Piezoelectric Nanowire With Consideration of Size-Dependent Piezoelectricity and Semiconducting Characterization
,”
Nanotechnology
,
29
(
25
), p.
255405
.
29.
Zhao
,
M. H.
,
Liu
,
X.
,
Fan
,
C. Y.
,
Lu
,
C. S.
, and
Wang
,
B. B.
,
2020
, “
Theoretical Analysis on the Extension of a Piezoelectric Semi-Conductor Nanowire: Effects of Flexoelectricity and Strain Gradient
,”
J. Appl. Phys.
,
127
(
8
), p.
085707
.
30.
Qu
,
Y. L.
,
Jin
,
F.
, and
Yang
,
J. S.
,
2020
, “
Effects of Mechanical Fields on Mobile Charges in a Composite Beam of Flexoelectric Dielectrics and Semiconductors
,”
J. Appl. Phys.
,
127
(
19
), p.
194502
.
31.
Luo
,
Y.
,
Zhang
,
C.
,
Chen
,
W.
, and
Yang
,
J.
,
2019
, “
Piezotronic Effect of a Thin Film With Elastic and Piezoelectric Semiconductor Layers Under a Static Flexural Loading
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051003
.
32.
Sun
,
L.
,
Zhang
,
Z. C.
,
Gao
,
C. F.
, and
Zhang
,
C. L.
,
2021
, “
Effect of Flexoelectricity on Piezotronic Responses of a Piezoelectric Semiconductor Bilayer
,”
J. Appl. Phys.
,
129
(
24
), p.
244102
.
33.
Guo
,
J.
,
Nie
,
G.
,
Liu
,
J.
, and
Zhang
,
L.
,
2022
, “
Free Vibration of a Piezoelectric Semiconductor Plate
,”
Eur. J. Mech. A Solids
,
95
, p.
104647
.
34.
Qu
,
Y. L.
,
Jin
,
F.
, and
Yang
,
J. S.
,
2022
, “
Bending of a Flexoelectric Semiconductor Plate
,”
Acta Mech. Solida Sin.
,
35
(
3
), pp.
434
445
.
35.
Mao
,
S.
,
Purohit
,
P.K.
, and
Aravas
,
N.
,
2016
, “
Mixed Finite-Element Formulations in Piezoelectricity and Flexoelectricity
,”
Proc. R. Soc. A.: Math. Phys. Eng. Sci
,
472
(
2190
),
20150879
.
36.
Deng
,
F.
,
Deng
,
Q.
,
Yu
,
W.
, and
Shen
,
S.
,
2017
, “
Mixed Finite Elements for Flexoelectric Solids
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081004
.
37.
Sladek
,
J.
,
Sladek
,
V.
,
Lu
,
H. H.-H.
, and
Young
,
D. L.
,
2017
, “
The FEM Analysis of FGM Piezoelectric Semiconductor Problems
,”
Compos. Struct.
,
163
, pp.
13
20
.
38.
Zhao
,
M. H.
,
Yan
,
X. Y.
,
Wang
,
B. B.
, and
Zhang
,
Q. Y.
,
2022
, “
Finite Element Formulation for Piezoelectric Semiconductor Plates
,”
Mater. Today Commun.
,
30
, p.
103098
.
39.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Rational Mech. Anal.
,
57
(
4
), pp.
291
323
.
40.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
41.
Cammarata
,
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin Films
,”
Prog. Surf. Sci.
,
46
(
1
), pp.
1
38
.
42.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.
43.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
The Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.
44.
Lim
,
C. W.
, and
He
,
L. H.
,
2004
, “
Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness
,”
Int. J. Mech. Sci.
,
46
(
11
), pp.
1715
1726
.
45.
Mathur
,
A.
,
Sharma
,
P.
, and
Cammarata
,
R. C.
,
2005
, “
Negative Surface Energy – Clearing Up Confusion
,”
Nat. Mater.
,
4
(
3
), p.
186
.
46.
Duan
,
H. L.
,
Wang
,
J.
,
Karihaloo
,
B. L.
, and
Huang
,
Z. P.
,
2006
, “
Nanoporous Materials Can Be Made Stiffer Than Non-Porous Counterparts by Surface Modification
,”
Acta Mater.
,
54
(
11
), pp.
2983
2990
.
47.
Wang
,
J. X.
,
Huang
,
Z. P.
,
Duan
,
H. L.
,
Yu
,
S. W.
,
Feng
,
X. Q.
,
Wang
,
G. F.
,
Zhang
,
W. X.
, and
Wang
,
T. J.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sin.
,
24
(
1
), pp.
52
82
.
48.
Ansari
,
R.
, and
Sahmani
,
S.
,
2011
, “
Surface Stress Effects on the Free Vibration Behavior of Nanoplates
,”
Int. J. Eng. Sci.
,
49
(
11
), pp.
1204
1215
.
49.
Yang
,
Y.
,
Hu
,
Z.-L.
, and
Li
,
X.-F.
,
2021
, “
Axisymmetric Bending and Vibration of Circular Nanoplates With Surface Stresses
,”
Thin-Walled Struct.
,
166
, p.
108086
.
50.
Xu
,
X.-J.
,
Deng
,
Z.-C.
, and
Wang
,
B.
,
2013
, “
Closed Solutions for the Electromechanical Bending and Vibration of Thick Piezoelectric Nanobeams With Surface Effects
,”
J. Phys. D: Appl. Phys.
,
46
(
40
), pp.
405302
.
51.
Yan
,
Z.
, and
Jiang
,
L. Y.
,
2012
, “
Vibration and Buckling Analysis of a Piezoelectric Nanoplate Considering Surface Effects and In-Plane Constraint
,”
Proc. R. Soc. A
,
468
(
2147
), pp.
3458
3475
.
52.
Zhu
,
C. S.
,
Fang
,
X. Q.
,
Liu
,
J. X.
, and
Li
,
H. Y.
,
2017
, “
Surface Energy Effect on Nonlinear Free Vibration Behavior of Orthotropic Piezoelectric Cylindrical Nano-Shells
,”
Eur. J. Mech. A Solids
,
66
, pp.
423
432
.
53.
Shen
,
S. P.
, and
Hu
,
S. L.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.
54.
Yan
,
Z.
, and
Jiang
,
L. Y.
,
2013
, “
Size-Dependent Bending and Vibration Behavior of Piezoelectric Nanobeams Due to Flexoelectricity
,”
J. Phys. D: Appl. Phys.
,
46
(
35
), p.
355502
.
55.
Zhang
,
Z.
, and
Jiang
,
L.
,
2014
, “
Size Effects on Electromechanical Coupling Fields of a Bending Piezoelectric Nanoplate due to Surface Effects and Flexoelectricity
,”
J. Appl. Phys.
,
116
(
13
), p.
134308
.
56.
Alizadeh
,
A.
,
Sharma
,
P.
,
Ganti
,
S.
,
LeBoeuf
,
S. F.
, and
Tsakalakos
,
L.
,
2004
, “
Templated Wide Band-Gap Nanostructures
,”
J. Appl. Phys.
,
95
(
12
), pp.
8199
8206
.
57.
Zhang
,
Z. C.
,
Liang
,
C.
,
Wang
,
Y.
,
Xu
,
R. Q.
,
Gao
,
C. F.
, and
Zhang
,
C. L.
,
2021
, “
Static Bending and Vibration Analysis of Piezoelectric Semiconductor Beams Considering Surface Effects
,”
J. Vib. Eng. Technol.
,
9
(
7
), pp.
1789
1800
.
58.
Zhang
,
Q.
,
Li
,
M.
, and
Zhao
,
M.
,
2022
, “
Dynamic Analysis of a Piezoelectric Semiconductor Nanoplate With Surface Effect
,”
Mater. Today Commun.
,
33
, p.
104406
.
59.
He
,
Q.-L.
,
Zhu
,
C.-S.
,
Han
,
B.-H.
,
Fang
,
X.-Q.
, and
Liu
,
J.-X.
,
2023
, “
Size-Dependent Free Vibration of Piezoelectric Semiconductor Plate
,”
Acta Mech.
,
234
(
10
), pp.
4821
4836
.
60.
Zhou
,
S.
,
Zhang
,
R.
,
Qiao
,
J.
,
Li
,
A.
, and
Zhou
,
S.
,
2022
, “
Analysis of Surface Effect and Flexoelectric Effect on the Electromechanical Responses of Bilayered Transversely Isotropic Rectangular Micro-Plate
,”
J. Appl. Phys.
,
132
(
22
), p.
225301
.
61.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plane Deformations of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
453
(
1959
), pp.
853
877
.
62.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
.
63.
Mohammadi
,
P.
, and
Sharma
,
P.
,
2012
, “
Atomistic Elucidation of the Effect of Surface Roughness on Curvature-Dependent Surface Energy, Surface Stress, and Elasticity
,”
Appl. Phys. Lett.
,
100
(
13
), p.
133110
.
64.
Neffati
,
D.
, and
Kulkarni
,
Y.
,
2022
, “
Homogenization of Surface Energy and Elasticity for Highly Rough Surfaces
,”
ASME J. Appl. Mech.
,
89
(
4
), p.
041004
.
65.
Ban
,
Y. X.
, and
Mi
,
C. W.
,
2020
, “
Analytical Solutions of a Spherical Nanoinhomogeneity Under Far-Field Unidirectional Loading Based on Steigmann-Ogden Surface Model
,”
Math. Mech. Solids
,
25
(
10
), pp.
1904
1923
.
66.
Li
,
X. B.
, and
Mi
,
C. W.
,
2019
, “
Effects of Surface Tension and Steigmann-Ogden Surface Elasticity on Hertzian Contact Properties
,”
Int. J. Eng. Sci.
,
145
, p.
103165
.
67.
Auld
,
B. A.
,
1973
,
Acoustic Fields and Waves in Solids
, Vol.
1
,
John Wiley and Sons
,
Hoboken, NJ
.
You do not currently have access to this content.