Abstract

Accurate prediction of the force required to puncture a soft material is critical in many fields like medical technology, food processing, and manufacturing. However, such a prediction strongly depends on our understanding of the complex nonlinear behavior of the material subject to deep indentation and complex failure mechanisms. Only recently, we developed theories capable of correlating puncture force with material properties and needle geometry. However, such models are based on simplifications that seldom limit their applicability to real cases. One common assumption is the incompressibility of the cut material, albeit no material is truly incompressible. In this article, we propose a simple model that accounts for linearly elastic compressibility, and its interplay with toughness, stiffness, and elastic strain stiffening. Confirming previous theories and experiments, materials having high toughness and low modulus exhibit the highest dimensionless puncture resistance at a given needle radius. Surprisingly, in these conditions, we observe that incompressible materials exhibit the lowest puncture resistance, where volumetric compressibility can create an additional (strain) energy barrier to puncture. Our model provides a valuable tool to assess the puncture resistance of soft compressible materials and suggests new design strategies for sharp needles and puncture-resistant materials.

References

1.
Martin
,
H. E.
, and
Ellis
,
E. B.
,
1930
, “
Biopsy by Needle Puncture and Aspiration
,”
Ann. Surg.
,
92
(
2
), pp.
169
181
.
2.
Moore
,
J. Z.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2012
, “
Novel Needle Cutting Edge Geometry for End-Cut Biopsy
,”
Med. Phys.
,
39
(
1
), pp.
99
108
.
3.
Hoffman
,
M. S. F.
,
McKeage
,
J. W.
,
Xu
,
J.
,
Ruddy
,
B. P.
,
Nielsen
,
P. M. F.
, and
Taberner
,
A. J.
,
2023
, “
Minimally Invasive Capillary Blood Sampling Methods
,”
Expert Rev. Med. Devices
,
20
(
1
), pp.
5
16
.
4.
Shrestha
,
P.
, and
Stoeber
,
B.
,
2018
, “
Fluid Absorption by Skin Tissue During Intradermal Injections Through Hollow Microneedles
,”
Sci. Rep.
,
8
(
1
), p.
13749
.
5.
Shu
,
W.
,
Heimark
,
H.
,
Bertollo
,
N.
,
Tobin
,
D. J.
,
O'Cearbhaill
,
E. D.
, and
Annaidh
,
A. N.
,
2021
, “
Insights Into the Mechanics of Solid Conical Microneedle Array Insertion Into Skin Using the Finite Element Method
,”
Acta Biomater.
,
135
, pp.
403
413
.
6.
van Gerwen
,
D. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2012
, “
Needle-Tissue Interaction Forces—A Survey of Experimental Data
,”
Med. Eng. Phys.
,
34
(
6
), pp.
665
680
.
7.
Wei
,
Z.
,
Wan
,
G.
,
Gardi
,
L.
,
Mills
,
G.
,
Downey
,
D.
, and
Fenster
,
A.
,
2004
, “
Robot-Assisted 3D-TRUS Guided Prostate Brachytherapy: System Integration and Validation
,”
Med. Phys.
,
31
(
3
), pp.
539
548
.
8.
Cho
,
W. K.
,
Ankrum
,
J. A.
,
Guo
,
D.
,
Chester
,
S. A.
,
Yang
,
S. Y.
,
Kashyap
,
A.
,
Campbell
,
G. A.
, et al
,
2012
, “
Microstructured Barbs on the North American Porcupine Quill Enable Easy Tissue Penetration and Difficult Removal
,”
Proc. Natl. Acad. Sci.
,
109
(
52
), pp.
21289
21294
.
9.
Thiery
,
G.
,
Guy
,
F.
, and
Lazzari
,
V.
,
2017
, “
Investigating the Dental Toolkit of Primates Based on Food Mechanical Properties: Feeding Action Does Matter
,”
Am. J. Primatol.
,
79
(
6
), p.
15
.
10.
Anderson
,
P. S. L.
,
2018
, “
Making a Point: Shared Mechanics Underlying the Diversity of Biological Puncture
,”
J. Exp. Biol.
,
221
(
22
), p.
jeb187294
.
11.
Zhang
,
B.
, and
Anderson
,
P. S. L.
,
2022
, “
Modelling Biological Puncture: A Mathematical Framework for Determining the Energetics and Scaling
,”
J. Royal Soc. Interface
,
19
(
195
), p.
20220559
.
12.
Li
,
Z.
, and
Thomas
,
C.
,
2014
, “
Quantitative Evaluation of Mechanical Damage to Fresh Fruits
,”
Trends Food Sci. Technol.
,
35
(
2
), pp.
138
150
.
13.
Swackhamer
,
C.
, and
Bornhorst
,
G. M.
,
2019
, “
Fracture Properties of Foods: Experimental Considerations and Applications to Mastication
,”
J. Food Eng.
,
263
, pp.
213
226
.
14.
Rajak
,
D. K.
,
Pagar
,
D. D.
,
Kumar
,
R.
, and
Pruncu
,
C. I.
,
2019
, “
Recent Progress of Reinforcement Materials: A Comprehensive Overview of Composite Materials
,”
J. Mater. Res. Technol.
,
8
(
6
), pp.
6354
6374
.
15.
JE
,
P. C.
,
Sultan
,
M. T. H.
,
Selvan
,
C. P.
,
Irulappasamy
,
S.
,
Mustapha
,
F.
,
Basri
,
A. A.
, and
Safri
,
S. N. A.
,
2020
, “
Manufacturing Challenges in Self-Healing Technology for Polymer Composites—A Review
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
7370
7379
.
16.
Mansoor
,
S.
,
Vasudevan
,
A.
, and
Ravikumar
,
M. M.
,
2021
, “
A Review on Puncture Analysis of Polymer Composites
,”
Mater. Today: Proc.
,
47
(
1
), pp.
366
369
.
17.
Song
,
Z.
, and
Cai
,
S.
,
2022
, “
Needle-Induced-Fracking in Soft Solids With Crack Blunting
,”
Extreme Mech. Lett.
,
52
, p.
101673
.
18.
Gong
,
J. P.
,
Katsuyama
,
Y.
,
Kurokawa
,
T.
, and
Osada
,
Y.
,
2003
, “
Double Network Hydrogels With Extremely High Mechanical Strength
,”
Adv. Mater.
,
15
(
14
), pp.
1155
1158
.
19.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.
20.
Bacca
,
M.
, and
McMeeking
,
R. M.
,
2017
, “
A Viscoelastic Constitutive Law for Hydrogels
,”
Meccanica
,
52
(
14
), pp.
3345
3355
.
21.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2004
, “
Mechanisms of Deep Penetration of Soft Solids, With Application to the Injection and Wounding of Skin
,”
Proc. Royal Soc. London A
,
460
(
2050
), pp.
3037
3058
.
22.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2005
, “
Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
838
848
.
23.
Fakhouri
,
S.
,
Hutchens
,
S. B.
, and
Crosby
,
A. J.
,
2015
, “
Puncture Mechanics of Soft Solids
,”
Soft Matter
,
11
(
23
), pp.
4723
4730
.
24.
Rattan
,
S.
, and
Crosby
,
A. J.
,
2019
, “
Effect of Polymer Volume Fraction on Fracture Initiation in Soft Gels at Small Length Scales
,”
ACS Macro Lett.
,
8
(
5
), pp.
492
498
.
25.
Fregonese
,
S.
, and
Bacca
,
M.
,
2021
, “
Piercing Soft Solids: A Mechanical Theory for Needle Insertion
,”
J. Mech. Phys. Solids
,
154
, p.
104497
.
26.
Spagnoli
,
A.
,
Brighenti
,
R.
,
Alberini
,
R.
,
Montanari
,
M.
, and
Terzano
,
M.
,
2022
, “
On Mode I Crack Mechanism in the Puncturing of Soft Tissues
,”
Procedia Struct. Integrity
,
41
, pp.
656
663
.
27.
Montanari
,
M.
,
Brighenti
,
R.
,
Terzano
,
M.
, and
Spagnoli
,
A.
,
2023
, “
Puncturing of Soft Tissues: Experimental and Fracture Mechanics-Based Study
,”
Soft Matter
,
19
(
20
), pp.
3629
3639
.
28.
Fregonese
,
S.
, and
Bacca
,
M.
,
2022
, “
How Friction and Adhesion Affect the Mechanics of Deep Penetration in Soft Solids
,”
Soft Matter
,
18
(
36
), pp.
6882
6887
.
29.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. Royal Soc. London A
,
326
(
1567
), pp.
565
584
.
You do not currently have access to this content.