Abstract

Poisson’s ratios of diamond-like structures, such as cubic C, Si, and Ge, have been widely explored because of their potential applications in solid-state devices. However, the theoretical bounds on the Poisson’s ratios of diamond-like structures remain unknown. By correlating macroscopic elastic constants with microscopic force constants of diamond-like structures, we here derived analytical expressions for the minimum Poisson’s ratio, the maximum Poisson’s ratio, and the Poisson’s ratios averaged by three schemes (i.e., Voigt averaging scheme, Reuss averaging scheme, and Hill averaging scheme) as solely a function of a dimensionless quantity (λ) that characterizes the ratio of mechanical resistances to the angle bending and bond stretching. Based on these expressions, we further determined the bounds on the Poisson’s ratios, the minimum Poisson’s ratio, the maximum Poisson’s ratio, and the Poisson’s ratios averaged by three schemes (i.e., Voigt averaging scheme, Reuss averaging scheme, and Hill averaging scheme), which are (−1, 4/5), (−1, 1/5), (0, 4/5), (−1, 1/2), (−1/3, 1/2), and (−2/3, 1/2), respectively. These results were well supported by atomistic simulations. Mechanism analyses demonstrated that the diverse Poisson’s behaviors of diamond-like structures result from the interplay between two deformation modes (i.e., bond stretching and angle bending). This work provides the roadmap for finding interesting Poisson’s behaviors of diamond-like structures.

References

1.
Greaves
,
G. N.
,
Greer
,
A. L.
,
Lakes
,
R. S.
, and
Rouxel
,
T.
,
2011
, “
Poisson’s Ratio and Modern Materials
,”
Nat. Mater.
,
10
(
11
), pp.
823
837
.
2.
Huang
,
C.
, and
Chen
,
L.
,
2016
, “
Negative Poisson’s Ratio in Modern Functional Materials
,”
Adv. Mater.
,
28
(
37
), pp.
8079
8096
.
3.
Choi
,
J. B.
, and
Lakes
,
R. S.
,
1992
, “
Non-Linear Properties of Polymer Cellular Materials With a Negative Poisson’s Ratio
,”
J. Mater. Sci.
,
27
(
17
), pp.
4678
4684
.
4.
Gao
,
E.
,
Li
,
R.
,
Fang
,
S.
,
Shao
,
Q.
, and
Baughman
,
R. H.
,
2021
, “
Bounds on the In-Plane Poisson’s Ratios and the In-Plane Linear and Area Compressibilities for Sheet Crystals
,”
J. Mech. Phys. Solids
,
152
, p.
104409
.
5.
Dudek
,
K. K.
,
Iglesias Martínez
,
J. A.
,
Ulliac
,
G.
,
Hirsinger
,
L.
,
Wang
,
L.
,
Laude
,
V.
, and
Kadic
,
M.
,
2023
, “
Micro-Scale Mechanical Metamaterial With a Controllable Transition in the Poisson’s Ratio and Band Gap Formation
,”
Adv Mater
,
35
(
20
), p.
e2210993
.
6.
Saxena
,
K. K.
,
Das
,
R.
, and
Calius
,
E. P.
,
2016
, “
Three Decades of Auxetics Research−Materials with Negative Poisson’s Ratio: A Review
,”
Adv. Eng. Mater.
,
18
(
11
), pp.
1847
1870
.
7.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
8.
Choi
,
J. B.
, and
Lakes
,
R. S.
,
1992
, “
Non-Linear Properties of Metallic Cellular Materials With a Negative Poisson’s Ratio
,”
J. Mater. Sci.
,
27
(
19
), pp.
5375
5381
.
9.
Lakes
,
R.
,
1993
, “
Advances in Negative Poisson’s Ratio Materials
,”
Adv. Mater.
,
5
(
4
), pp.
293
296
.
10.
Wen
,
Y.
,
Gao
,
E.
,
Hu
,
Z.
,
Xu
,
T.
,
Lu
,
H.
,
Xu
,
Z.
, and
Li
,
C.
,
2019
, “
Chemically Modified Graphene Films With Tunable Negative Poisson’s Ratios
,”
Nat. Commun.
,
10
(
1
), p.
2446
.
11.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.
12.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.
13.
Pratapa
,
P. P.
,
Liu
,
K.
, and
Paulino
,
G. H.
,
2019
, “
Geometric Mechanics of Origami Patterns Exhibiting Poisson’s Ratio Switch by Breaking Mountain and Valley Assignment
,”
Phys. Rev. Lett.
,
122
(
15
), p.
155501
.
14.
Hall
,
L. J.
,
Coluci
,
V. R.
,
Galvão
,
D. S.
,
Kozlov
,
M. E.
,
Zhang
,
M.
,
Dantas
,
S. O.
, and
Baughman
,
R. H.
,
2008
, “
Sign Change of Poisson’s Ratio for Carbon Nanotube Sheets
,”
Science
,
320
(
5875
), pp.
504
507
.
15.
Weiner
,
J. H.
,
1983
,
Statistical Mechanics of Elasticity
,
Wiley
,
New York
.
16.
Gercek
,
H.
,
2007
, “
Poisson’s Ratio Values for Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
44
(
1
), pp.
1
13
.
17.
Boulanger
,
P.
, and
Hayes
,
M.
,
1998
, “
Poisson’s Ratio for Orthorhombic Materials
,”
J. Elast.
,
50
(
1
), pp.
87
89
.
18.
Lempriere
,
B.
,
1968
, “
Poisson’s Ratio in Orthotropic Materials
,”
AIAA. J.
,
6
(
11
), pp.
2226
2227
.
19.
Ting
,
T.
, and
Chen
,
T.
,
2005
, “
Poisson’s Ratio for Anisotropic Elastic Materials Can Have No Bounds
,”
Q. J. Mech. Appl. Math.
,
58
(
1
), pp.
73
82
.
20.
Ting
,
T. C. T.
, and
Barnett
,
D. M.
,
2005
, “
Negative Poisson’s Ratios in Anisotropic Linear Elastic Media
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
929
931
.
21.
Jia
,
X.
,
Yuan
,
X.
,
Shui
,
H.
, and
Gao
,
E.
,
2021
, “
Poisson’s Ratio of Two-Dimensional Hexagonal Materials Under Finite Strains
,”
Mech. Adv. Mater. Struct.
,
30
(
4
), pp.
1
7
.
22.
Zhang
,
C.
,
Wei
,
N.
,
Gao
,
E.
, and
Sun
,
Q.
,
2020
, “
Poisson’s Ratio of Two-Dimensional Hexagonal Crystals: A Mechanics Model Study
,”
Extreme Mech. Lett.
,
38
, p.
100748
.
23.
Ting
,
T. C. T.
,
2005
, “
Very Large Poisson’s Ratio With a Bounded Transverse Strain in Anisotropic Elastic Materials
,”
J. Elast.
,
77
(
2
), pp.
163
176
.
24.
Fast
,
L.
,
Wills
,
J. M.
,
Johansson
,
B.
, and
Eriksson
,
O.
,
1995
, “
Elastic Constants of Hexagonal Transition Metals: Theory
,”
Phys. Rev. B
,
51
(
24
), pp.
17431
17438
.
25.
Thomas
,
T. Y.
,
1966
, “
On the Stress-Strain Relations for Cubic Crystals
,”
Proc. Natl. Acad. Sci.
,
55
(
2
), pp.
235
239
.
26.
Voigt
,
W. J. T. L.
,
1928
, “
A Determination of the Elastic Constants for Beta-Quartz Lehrbuch De Kristallphysik
,”
Terubner Leipzig.
,
40
, pp.
2856
2860
.
27.
Reuss
,
A.
,
1929
, “
Berechnung Der Fließgrenze Von Mischkristallen Auf Grund Der Plastizitätsbedingung Für Einkristalle
,”
Z. Angew. Math. Mech.
,
9
(
1
), pp.
49
58
.
28.
Hill
,
R.
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proc. Phys. Soc. A
,
65
(
5
), pp.
349
354
.
29.
Marmier
,
A.
,
Lethbridge
,
Z. A.
,
Walton
,
R. I.
,
Smith
,
C. W.
,
Parker
,
S. C.
, and
Evans
,
K. E.
,
2010
, “
ELAM: A Computer Program for the Analysis and Representation of Anisotropic Elastic Properties
,”
Comput. Phys. Commun.
,
181
(
12
), pp.
2102
2115
.
30.
Fang
,
Y.
,
Wang
,
Y.
,
Imtiaz
,
H.
,
Liu
,
B.
, and
Gao
,
H.
,
2019
, “
Energy-Ratio-Based Measure of Elastic Anisotropy
,”
Phys. Rev. Lett.
,
122
(
4
), p.
045502
.
31.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
32.
Rassoulinejad-Mousavi
,
S. M.
,
Mao
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Evaluation of Copper, Aluminum, and Nickel Interatomic Potentials on Predicting the Elastic Properties
,”
J. Appl. Phys.
,
119
(
24
), p.
244304
.
33.
Zouboulis
,
E. S.
,
Grimsditch
,
M.
,
Ramdas
,
A. K.
, and
Rodriguez
,
S.
,
1998
, “
Temperature Dependence of the Elastic Moduli of Diamond: A Brillouin-Scattering Study
,”
Phys. Rev. B
,
57
(
5
), pp.
2889
2896
.
You do not currently have access to this content.