Abstract

This work proposes a unique configuration of a two-dimensional metamaterial lattice grid comprising curved and tapered beams. The propagation of elastic waves in the structure is analyzed using the dynamic stiffness matrix (DSM) approach and the Floquet–Bloch theorem. The DSM for the unit cell is formulated under the extensional theory of curved beam, considering the effects of shear and rotary inertia. The study considers two types of variable rectangular cross sections, viz. single taper and double taper along the length of the beam. Further, the effect of curvature and taper on the wave propagation is analyzed through the band diagram along the irreducible Brillouin zone. It is shown that a complete band gap, i.e., attenuation band in all the directions of wave propagation, in a homogeneous structure can be tailored with a suitable combination of curvature and taper. Generation of the complete bandgap is hinged upon the coupling of the axial and transverse components of the lattice grid. This coupling emerges due to the presence of the curvature and is further enhanced due to tapering. The double taper cross section is shown to have wider attenuation characteristics than single taper cross sections. Specifically, 83.36% and 63% normalized complete bandwidth is achieved for the double and single taper cross section for a homogeneous metamaterial, respectively. Additional characteristics of the proposed metamaterial in the time and frequency domain of the finite structure, vibration attenuation, wave localization in the equivalent finite structure are also studied.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
2.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
, and
Kucheyev
,
S. O.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
3.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
,
Weisgraber
,
T.
, and
Spadaccini
,
C. M.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
.
4.
Hewage
,
T. A.
,
Alderson
,
K. L.
,
Alderson
,
A.
, and
Scarpa
,
F.
,
2016
, “
Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson’s Ratio Properties
,”
Adv. Mater.
,
28
(
46
), pp.
10323
10332
.
5.
Martinsson
,
P.
, and
Movchan
,
A.
,
2003
, “
Vibrations of Lattice Structures and Phononic Band Gaps
,”
Q. J. Mech. Appl. Math.
,
56
(
1
), pp.
45
64
.
6.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2004
, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4400
4402
.
7.
Xiang
,
H.
,
Shi
,
Z.
,
Wang
,
S.
, and
Mo
,
Y.
,
2012
, “
Periodic Materials-based Vibration Attenuation in Layered Foundations: Experimental Validation
,”
Smart Mater. Struct.
,
21
(
11
), p.
112003
.
8.
Prasad
,
R.
, and
Sarkar
,
A.
,
2019
, “
Broadband Vibration Isolation for Rods and Beams Using Periodic Structure Theory
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021004.
9.
Banerjee
,
A.
,
Das
,
R.
, and
Calius
,
E. P.
,
2019
, “
Waves in Structured Mediums Or Metamaterials: a Review
,”
Arch. Comput. Methods Eng.
,
26
(
4
), pp.
1029
1058
.
10.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am
,
119
(
4
), pp.
1995
2005
.
11.
Lim
,
Q. J.
,
Wang
,
P.
,
Koh
,
S. J. A.
,
Khoo
,
E. H.
, and
Bertoldi
,
K.
,
2015
, “
Wave Propagation in Fractal-Inspired Self-Similar Beam Lattices
,”
Appl. Phys. Lett.
,
107
(
22
), p.
221911
.
12.
Bordiga
,
G.
,
Cabras
,
L.
,
Bigoni
,
D.
, and
Piccolroaz
,
A.
,
2019
, “
Free and Forced Wave Propagation in a Rayleigh-Beam Grid: Flat Bands, Dirac Cones, and Vibration Localization Vs Isotropization
,”
Int. J. Solids. Struct.
,
161
, pp.
64
81
.
13.
Casadei
,
F.
, and
Rimoli
,
J.
,
2013
, “
Anisotropy-Induced Broadband Stress Wave Steering in Periodic Lattices
,”
Int. J. Solids. Struct.
,
50
(
9
), pp.
1402
1414
.
14.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices
,”
J. Sound. Vib.
,
312
(
1–2
), pp.
125
139
.
15.
Zhu
,
Z.
,
Deng
,
Z.
, and
Du
,
J.
,
2019
, “
Elastic Wave Propagation in Hierarchical Honeycombs With Woodpile-Like Vertexes
,”
J. Vib. Acoust.
,
141
(
4
), p.
041020
(9 pages).
16.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
014301
.
17.
Wang
,
P.
,
Shim
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Effects of Geometric and Material Nonlinearities on Tunable Band Gaps and Low-Frequency Directionality of Phononic Crystals
,”
Phys. Rev. B
,
88
(
1
), p.
014304
.
18.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B
,
78
(
18
), p.
184107
.
19.
Trainiti
,
G.
,
Rimoli
,
J.
, and
Ruzzene
,
M.
,
2015
, “
Wave Propagation in Periodically Undulated Beams and Plates
,”
Int. J. Solids. Struct.
,
75
, pp.
260
276
.
20.
Trainiti
,
G.
,
Rimoli
,
J. J.
, and
Ruzzene
,
M.
,
2016
, “
Wave Propagation in Undulated Structural Lattices
,”
Int. J. Solids. Struct.
,
97
, pp.
431
444
.
21.
Warmuth
,
F.
, and
Körner
,
C.
,
2015
, “
Phononic Band Gaps in 2D Quadratic and 3d Cubic Cellular Structures
,”
Materials
,
8
(
12
), pp.
8327
8337
.
22.
Wang
,
Y.-F.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2014
, “
Bandgaps and Directional Propagation of Elastic Waves in 2D Square Zigzag Lattice Structures
,”
J. Phys. D: Appl. Phys.
,
47
(
48
), p.
485102
.
23.
Spadoni
,
A.
,
Ruzzene
,
M.
,
Gonella
,
S.
, and
Scarpa
,
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
.
24.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound. Vib.
,
333
(
10
), pp.
2759
2773
.
25.
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2011
, “
Wave Propagation Characterization and Design of Two-Dimensional Elastic Chiral Metacomposite
,”
J. Sound. Vib.
,
330
(
11
), pp.
2536
2553
.
26.
Liu
,
X.-N.
,
Hu
,
G.-K.
,
Huang
,
G.-L.
, and
Sun
,
C.-T.
,
2011
, “
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(
25
), p.
251907
.
27.
Zhang
,
K.
,
Zhao
,
C.
,
Zhao
,
P.
,
Luo
,
J.
, and
Deng
,
Z.
,
2020
, “
Wave Propagation Properties of Rotationally Symmetric Lattices With Curved Beams
,”
J. Acoust. Soc. Am.
,
148
(
3
), pp.
1567
1584
.
28.
Prasad
,
R.
, and
Banerjee
,
A.
,
2021
, “
Influence of Conicity on the Free Wave Propagation in Symmetric Tapered Periodic Beam
,”
Mech. Res. Commun.
,
111
, p.
103655
.
29.
Kelvin
,
L. W. T.
,
1904
,
Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light
,
CUP Archive
,
London
.
30.
Liu
,
X.
,
Huang
,
G.
, and
Hu
,
G.
,
2012
, “
Chiral Effect in Plane Isotropic Micropolar Elasticity and Its Application to Chiral Lattices
,”
J. Mech. Phys. Solids.
,
60
(
11
), pp.
1907
1921
.
31.
Chidamparam
,
P.
, and
Leissa
,
A. W.
,
1993
, “
Vibrations of Planar Curved Beams, Rings, and Arches
,”
Appl. Mech. Rev.
,
46
(
9
), pp.
467
483
.
32.
Baxy
,
A.
, and
Sarkar
,
A.
,
2020
, “
Natural Frequencies of a Rotating Curved Cantilever Beam: A Perturbation Method-Based Approach
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
9
), pp.
1706
1719
.
33.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J
,
1974
,
Concepts and Applications of Finite Element Analysis
, Vol.
4
,
Wiley
,
New York
.
34.
Åberg
,
M.
, and
Gudmundson
,
P.
,
1997
, “
The Usage of Standard Finite Element Codes for Computation of Dispersion Relations in Materials With Periodic Microstructure
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
2007
2013
.
35.
Reddy
,
J. N.
,
2019
,
Introduction to the Finite Element Method
,
McGraw-Hill
,
New York
.
36.
Yuksel
,
O.
, and
Yilmaz
,
C.
,
2020
, “
Realization of An Ultrawide Stop Band in a 2-D Elastic Metamaterial with Topologically Optimized Inertial Amplification Mechanisms
,”
Int. J. Solids. Struct.
,
203
, pp.
138
150
.
37.
The Structural Mechanics Module User’s Guide, COMSOL Multiphysics® v. 5.6. COMSOL AB, Stockholm, Sweden. 2020, https://doc.comsol.com/5.4/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf
38.
Walsh
,
S. J.
, and
White
,
R.
,
2000
, “
Vibrational Power Transmission in Curved Beams
,”
J. Sound. Vib.
,
233
(
3
), pp.
455
488
.
39.
Rand
,
R. H.
,
2012
, Version 52, “Lecture Notes on Nonlinear Vibrations,” http://audiophile.tam.cornell.edu/randdocs/nlvibe52.pdf.
40.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
John Wiley & Sons
.
You do not currently have access to this content.