Abstract

It has been a difficult task to solve fractional oscillators analytically, especially when variable-order fractional derivatives (FDs) are included. The major difficulty consists in deriving analytical expressions for the variable FDs of trigonometric functions. To tackle this problem, a memory-free transformation for constant-order FDs is modified to transform the variable FDs equivalently into a nonlinear differential equation of integer order. Based on the equivalent equation, an analytical solution is obtained for the variable FD, showing nice agreement with numerical results. According to the approximate analytical solution in closed form, the frequency amplitude curve and the backbone line of variable fractional oscillators are determined accurately. In addition, it provides us with convenience in analyzing the primary resonance.

References

1.
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2020
, “
Application of Variable- and Distributed-Order Fractional Operators to the Dynamic Analysis of Nonlinear Oscillators
,”
Nonlinear Dyn.
,
100
(
1
), pp.
561
580
.
2.
Ingman
,
D.
,
Suzdalnitsky
,
J.
, and
Zeifman
,
M.
,
2000
, “
Constitutive Dynamic-Order Model for Nonlinear Contact Phenomena
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
383
390
.
3.
Zhou
,
F. X.
,
Wang
,
L. Y.
,
Liu
,
Z. Y.
, and
Zhao
,
W. C.
,
2021
, “
A Viscoelastic-Viscoplastic Mechanical Model of Time-Dependent Materials Based on Variable-Order Fractional Derivative
,”
Mech. Time-Depend. Mater.
,
26
(
3
) pp.
1
19
.
4.
Ramirez
,
L. E. S.
, and
Coimbra
,
C. F. M.
,
2007
, “
A Variable Order Constitutive Relation for Viscoelasticity
,”
Ann. Phys.
,
519
(
7–8
), pp.
543
552
.
5.
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2021
, “
Variable-Order Fracture Mechanics and Its Application to Dynamic Fracture
,”
NPJ Comput. Mater.
,
7
(
1
), pp.
1
8
.
6.
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2020
, “
Variable-Order Particle Dynamics: Formulation and Application to the Simulation of Edge Dislocations
,”
Philos. Trans. R. Soc. A
,
378
(
2172
), p.
20190209
.
7.
Dabiri
,
A.
,
Moghaddam
,
B. P.
, and
Machado
,
J. A. T.
,
2018
, “
Optimal Variable-Order Fractional PID Controllers for Dynamical Systems
,”
J. Comput. Appl. Math.
,
339
, pp.
40
48
.
8.
Diaz
,
G.
, and
Coimbra
,
C. F. M.
,
2009
, “
Nonlinear Dynamics and Control of a Variable Order Oscillator With Application to the van der Pol Equation
,”
Nonlinear Dyn.
,
56
(
1
), pp.
145
157
.
9.
Chechkin
,
A. V.
,
Gorenflflo
,
R.
, and
Sokolov
,
I. M.
,
2005
, “
Fractional Diffusion in Inhomogeneous Media
,”
J. Phys. A Math. Gen.
,
38
(
42
), pp.
L679
L684
.
10.
Straka
,
P.
,
2018
, “
Variable Order Fractional Fokker–Planck Equations Derived From Continuous Time Random Walks
,”
Physica A
,
503
, pp.
451
463
.
11.
Sun
,
H.
,
Zhang
,
Y.
,
Chen
,
W.
, and
Reeves
,
D. M.
,
2014
, “
Use of a Variable-Index Fractional-Derivative Model to Capture Transient Dispersion in Heterogeneous Media
,”
J. Contam. Hydrol.
,
157
(
2014
), pp.
47
58
.
12.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
Nonlinear Dyn.
,
29
(
1
), pp.
57
98
.
13.
Pedro
,
H.
,
Kobayashi
,
M.
,
Pereira
,
J.
, and
Coimbra
,
C.
,
2008
, “
Variable Order Modeling of Diffusive–Convective Effects on the Oscillatory Flow Past a Sphere
,”
J. Vib. Control
,
14
(
9–10
), pp.
1659
1672
.
14.
Orosco
,
J.
, and
Coimbra
,
C. F. M.
,
2018
, “
Variable-Order Modeling of Nonlocal Emergence in Many-Body Systems: Application to Radiative Dispersion
,”
Phys. Rev. E
,
98
(
3
), p.
032208
.
15.
Meng
,
R. F.
,
Yin
,
D. S.
,
Zhou
,
C.
, and
Wu
,
H.
,
2016
, “
Fractional Description of Time-Dependent Mechanical Property Evolution in Materials With Strain Softening Behavior
,”
Appl. Math. Model.
,
40
(
1
), pp.
398
406
.
16.
Meng
,
R. F.
,
Yin
,
D. S.
, and
Drapaca
,
C. S.
,
2019
, “
Variable-Order Fractional Description of Compression Deformation of Amorphous Glassy Polymers
,”
Comput. Mech.
,
64
(
1
), pp.
163
171
.
17.
Meng
,
R. F.
,
Yin
,
D. S.
, and
Drapaca
,
C. S.
,
2019
, “
A Variable Order Fractional Constitutive Model of the Viscoelastic Behavior of Polymers
,”
Int. J. Non-Linear Mech.
,
113
, pp.
171
177
.
18.
Wu
,
F.
,
Liu
,
J. F.
, and
Wang
,
J.
,
2015
, “
An Improved Maxwell Creep Model for Rock Based on Variable-Order Fractional Derivatives
,”
Environ. Earth Sci.
,
73
(
11
), pp.
6965
6971
.
19.
Li
,
Z.
,
Wang
,
H.
,
Xiao
,
R.
, and
Yang
,
S.
,
2017
, “
A Variable-Order Fractional Differential Equation Model of Shape Memory Polymers
,”
Chaos Soliton Fract.
,
102
, pp.
473
485
.
20.
Coronel-Escamilla
,
A.
, and
Gómez-Aguilar
,
J. F.
,
2020
, “
A Novel Predictor-Corrector Scheme for Solving Variable-order Fractional Delay Differential Equations Involving Operators with Mittag-Leffler Kernel
,”
Discrete Cont. Dyn-S
,
13
(
3
), pp.
561
574
.
21.
Moghaddam
,
B. P.
,
Yaghoobi
,
S.
, and
Tenreiro Machado
,
J. A.
,
2016
, “
An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061001
.
22.
Zhao
,
X.
,
Sun
,
Z. Z.
, and
Karniadakis
,
G. E.
,
2015
, “
Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications
,”
J. Comput. Phys.
,
293
, pp.
184
200
.
23.
Yaghoobi
,
S.
,
Moghaddam
,
B. P.
, and
Ivaz
,
K.
,
2017
, “
An Efficient Cubic Spline Approximation for Variable-Order Fractional Differential Equations With Time Delay
,”
Nonlinear Dyn.
,
87
(
2
), pp.
815
826
.
24.
Hafez
,
R. M.
, and
Youssri
,
Y. H.
,
2018
, “
Jacobi Collocation Scheme for Variable-Order Fractional Reaction–Subdiffusion Equation
,”
Comput. Appl. Math.
,
37
(
4
), pp.
5315
5333
.
25.
Yang
,
J. B.
,
Yao
,
H. M.
, and
Wu
,
B. Y.
,
2018
, “
An Efficient Numerical Method for Variable Order Fractional Functional Differential Equation
,”
Appl. Math. Lett.
,
76
, pp.
221
226
.
26.
Heydari
,
M. H.
,
Avazzadeh
,
Z.
, and
Haromi
,
M. F.
,
2019
, “
A Wavelet Approach for Solving Multi-Term Variable-Order Time Fractional Diffusion-Wave Equation
,”
Appl. Math. Comput.
,
341
, pp.
215
228
.
27.
Bhrawy
,
A. H.
, and
Zaky
,
M. A.
,
2017
, “
Highly Accurate Numerical Schemes for Multi-dimensional Space Variable-Order Fractional Schrödinger Equations
,”
Comput. Math. Appl.
,
73
(
6
), pp.
1100
1117
.
28.
Patnaik
,
S.
,
Hollkamp
,
J. P.
, and
Semperlotti
,
F.
,
2020
, “
Applications of Variable-Order Fractional Operators: A Review
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190498
.
29.
Coimbra
,
C. F. M.
,
2003
, “
Mechanics With Variable-Order Differential Operators
,”
Ann. Phys.
,
12
(
11–12
), pp.
692
703
.
30.
Yuan
,
L.
, and
Agrawal
,
O. P.
,
2002
, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
321
324
.
31.
Liu
,
Q. X.
,
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2018
, “
An Improved Yuan–Agrawal Method With Rapid Convergence Rate for Fractional Differential Equations
,”
Comput. Mech.
,
63
(
4
), pp.
1
11
.
32.
Diethelm
,
K.
,
2008
, “
An Investigation of Some Nonclassical Methods for the Numerical Approximation of Caputo-Type Fractional Derivatives
,”
Numer. Algorithms
,
47
(
4
), pp.
361
390
.
33.
Lu
,
J. F.
, and
Hanyga
,
A.
,
2005
, “
Wave Field Simulation for Heterogeneous Porous Media With Singular Memory Drag Force
,”
J. Comput. Phys.
,
208
(
2
), pp.
651
674
.
34.
Adhikari
,
S.
,
2010
, “
A Reduced Second-Order Approach for Linear Viscoelastic Oscillators
,”
ASME J. Appl. Mech.
,
77
(
4
), p.
041003
.
35.
Liu
,
Q. X.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2017
, “
An Analytical Criterion for Jump Phenomena in Fractional Duffing Oscillators
,”
Chaos Solitons Fract.
,
98
, pp.
216
219
.
36.
Liu
,
Q. X.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2016
, “
Asymptotic Limit Cycle of Fractional van der Pol Oscillator by Homotopy Analysis Method and Memory-Free Principle
,”
Appl. Math. Model.
,
40
(
4
), pp.
3211
3220
.
37.
Chen
,
Y. M.
,
Liu
,
Q. X.
, and
Liu
,
J. K.
,
2018
, “
Time-Dependent Decay Rate and Frequency for Free Vibration of Fractional Oscillator
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
024501
.
38.
Soon
,
C. M.
,
Coimbra
,
C. F. M.
, and
Kobayashi
,
M. H.
,
2005
, “
The Variable Viscoelasticity Oscillator
,”
Anna Phys.
,
14
(
6
), pp.
378
389
.
You do not currently have access to this content.