Abstract

Left ventricular (LV) volume is a crucial indicator for the assessment of the heart function. However, the current clinical practice cannot be used to monitor the LV volume continuously or warn patients with high risk in time before heart attack occurs in everyday life, resulting in high mortality and morbidity. Here, we theoretically validate the potentiality of a conformal real-time LV deformation-monitoring sensor using piezoelectric materials. The electromechanical relationship between the deformation of the hearts and output voltage signals of the sensors is demonstrated first. End-to-end displacements and deformations of piezoelectric films under cyclic load are derived from the output voltage signals and then compared with experimental values. Then, the real-time LV volumes of a pig and a cow are derived and compared by employing the experimental output voltage signals of the flexible sensor mounted on the LV surface. Finally, by employing the LV volume data of healthy people and patients with various heart diseases in the literature, the theoretical output voltage signals of flexile sensors when mounted on LV surface are calculated and compared. These predicted output voltage signals show significant differences for people with different kinds of cardiac diseases. The results in this study demonstrate that the conformal piezoelectric sensor is fully potential to continuously monitor the cardiac deformation and correspondingly provide timely warning for cardiologists and patients with heart diseases.

References

1.
Wilmot
,
K. A.
,
Khan
,
A.
,
Krishnan
,
S.
,
Eapen
,
D. J.
, and
Sperling
,
L.
,
2015
, “
Statins in the Elderly: A Patient-Focused Approach
,”
Clin. Cardiol.
,
38
(
1
), pp.
56
61
. 10.1002/clc.22338
2.
Cohn
,
P. F.
,
Gorlin
,
R.
,
Cohn
,
L. H.
, and
Collins
,
J.
Jr
,
1974
, “
Left Ventricular Ejection Fraction as a Prognostic Guide in Surgical Treatment of Coronary and Valvular Heart Disease
,”
Am. J. Cardiol.
,
34
(
2
), pp.
136
141
. 10.1016/0002-9149(74)90191-X
3.
Paulus
,
W. J.
,
Tschöpe
,
C.
,
Sanderson
,
J. E.
,
Rusconi
,
C.
,
Flachskampf
,
F. A.
,
Rademakers
,
F. E.
,
Marino
,
P.
,
Smiseth
,
O. A.
,
De
,
K. G.
, and
Leitemoreira
,
A. F.
,
2007
, “
How to Diagnose Diastolic Heart Failure: A Consensus Statement on the Diagnosis of Heart Failure With Normal Left Ventricular Ejection Fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology
,”
Eur. Heart J.
,
28
(
20
), pp.
2539
2550
. 10.1093/eurheartj/ehm037
4.
Li
,
C. Y.
,
Gao
,
B. L.
,
Guo
,
F. Q.
,
Zhang
,
X. J.
,
Fan
,
Q. Y.
,
Wu
,
B. L.
,
Xiang
,
C.
,
Liu
,
X. W.
, and
Pan
,
T.
,
2016
, “
Quantitative Evaluation of Left Ventricular Volume and Function in Middle-Aged Healthy Chinese People With 3 Tesla MRI
,”
J. Magn. Reson. Imaging
,
44
(
5
), pp.
1143
1150
. 10.1002/jmri.25243
5.
Gaziano
,
T. A.
,
2005
, “
Cardiovascular Disease in the Developing World and Its Cost-Effective Management
,”
Circulation
,
112
(
23
), pp.
3547
3553
. 10.1161/CIRCULATIONAHA.105.591792
6.
Chang
,
B. C.
,
Lim
,
C. Y.
,
Park
,
P. W.
,
Park
,
K. Y.
,
Lee
,
Y. T.
, and
Kim
,
Y. J.
,
2001
, “
Volume Reduction Surgery for End-Stage Heart Failure: Experience in Korea
,”
J. Cardiac Surg.
,
16
(
2
), pp.
159
164
. 10.1111/j.1540-8191.2001.tb00502.x
7.
Corsi
,
C.
,
Saracino
,
G.
,
Sarti
,
A.
, and
Lamberti
,
C.
,
2002
, “
Left Ventricular Volume Estimation for Real-Time Three-Dimensional Echocardiography
,”
IEEE Trans. Med. Imaging
,
21
(
9
), pp.
1202
1208
. 10.1109/TMI.2002.804418
8.
Zeidan
,
Z.
,
Erbel
,
R.
,
Barkhausen
,
J.
,
Hunold
,
P.
,
Bartel
,
T.
, and
Buck
,
T.
,
2003
, “
Analysis of Global Systolic and Diastolic Left Ventricular Performance Using Volume-Time Curves by Real-Time Three-Dimensional Echocardiography
,”
J. Am. Soc. Echocardiogr.
,
16
(
1
), pp.
29
37
. 10.1067/mje.2003.40
9.
Nakanishi
,
K.
,
Fukuda
,
S.
,
Watanabe
,
H.
,
Seo
,
Y.
,
Mahara
,
K.
,
Hyodo
,
E.
,
Otsuka
,
K.
,
Ishizu
,
T.
,
Shimada
,
K.
, and
Sumiyoshi
,
T.
,
2015
, “
The Utility of Fully Automated Real-Time Three-Dimensional Echocardiography in the Evaluation of Left Ventricular Diastolic Function
,”
J. Cardiol.
,
66
(
1
), pp.
50
56
. 10.1016/j.jjcc.2014.08.007
10.
Park
,
S. M.
,
Kim
,
K. C.
,
Jeon
,
M. J.
,
Lee
,
C. K.
,
Kim
,
D. H.
,
Park
,
K. S.
,
Lee
,
W. H.
, and
Kwan
,
J.
,
2007
, “
Assessment of Left Ventricular Asynchrony Using Volume-Time Curves of 16 Segments by Real-Time 3 Dimensional Echocardiography: Comparison With Tissue Doppler Imaging
,”
Eur. J. Heart Fail.
,
9
(
1
), pp.
62
67
. 10.1016/j.ejheart.2006.04.009
11.
Solomon
,
S. B.
, and
Glantz
,
S. A.
,
1999
, “
Regional Ischemia Increases Sensitivity of Left Ventricular Relaxation to Volume in Pigs
,”
Am. J. Physiol.
,
276
(
6
), pp.
H1994
H2005
. 10.1152/ajpheart.1999.276.6.h1994
12.
Soliman
,
O. I.
,
Geleijnse
,
M. L.
,
Theuns
,
D. A.
,
van Dalen
,
B. M.
,
Vletter
,
W. B.
,
Jordaens
,
L. J.
,
Metawei
,
A. K.
,
Alamin
,
A. M.
, and
ten Cate
,
F. J.
,
2009
, “
Usefulness of Left Ventricular Systolic Dyssynchrony by Real-Time Three-Dimensional Echocardiography to Predict Long-Term Response to Cardiac Resynchronization Therapy
,”
Am. J. Cardiol.
,
103
(
11
), pp.
1586
1591
. 10.1016/j.amjcard.2009.01.372
13.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
Das
,
S. R.
,
de Ferranti
,
S.
, and
Després
,
J. P.
,
2016
, “
Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association
,”
Circulation
,
133
(
4
), pp.
e38
360
. 10.1161/CIR.0000000000000350
14.
Jacobs
,
L. D.
,
Salgo
,
I. S.
,
Goonewardena
,
S.
,
Weinert
,
L.
,
Coon
,
P.
,
Bardo
,
D.
,
Gerard
,
O.
,
Allain
,
P.
,
Zamorano
,
J. L.
, and
de Isla
,
L. P.
,
2006
, “
Rapid Online Quantification of Left Ventricular Volume From Real-Time Three-Dimensional Echocardiographic Data
,”
Eur. Heart J.
,
27
(
4
), pp.
460
468
. 10.1093/eurheartj/ehi666
15.
Zhang
,
H.
,
Shen
,
M. Z.
,
Zhang
,
Y. Y.
,
Chen
,
Y. S.
, and
,
C. F.
,
2018
, “
Identification of Static Loading Conditions Using Piezoelectric Sensor Arrays
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011008
. 10.1115/1.4038426
16.
Zhang
,
H.
,
Zhang
,
C. H.
,
Zhang
,
J. W.
,
Quan
,
L. W.
,
Huang
,
H. Y.
,
Jiang
,
J. Q.
,
Dong
,
S. R.
, and
Luo
,
J. K.
,
2019
, “
A Theoretical Approach for Optimizing Sliding-Mode Triboelectric Nanogenerator Based on Multi-Parameter Analysis
,”
Nano Energy
,
61
, pp.
442
453
. 10.1016/j.nanoen.2019.04.057
17.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y. G.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
. 10.1126/science.1182383
18.
Zhang
,
H.
,
Quan
,
L. W.
,
Chen
,
J. K.
,
Xu
,
C. K.
,
Zhang
,
C. H.
,
Dong
,
S. R.
,
,
C. F.
, and
Luo
,
J. K.
,
2019
, “
A General Optimization Approach for Contact-Separation Triboelectric Nanogenerator
,”
Nano Energy
,
56
, pp.
700
707
. 10.1016/j.nanoen.2018.11.062
19.
Liu
,
S. Y.
,
Ha
,
T.
, and
Lu
,
N. S.
,
2019
, “
Experimentally and Numerically Validated Analytical Solutions to Non-Buckling Piezoelectric Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051010
. 10.1115/1.4042570
20.
Yin
,
S. Z.
, and
Su
,
Y. W.
,
2019
, “
A Traction-Free Model for the Tensile Stiffness and Bending Stiffness of Laminated Ribbons of Flexible Electronics
,”
ASME J. Appl. Mech.
,
86
(5), p.
051011
. 10.1115/1.4042920
21.
Huang
,
Y.
,
Mu
,
Z. Z.
,
Feng
,
P.
, and
Yuan
,
J. H.
,
2018
, “
Mechanics Design for Compatible Deformation of Fractal Serpentine Interconnects in High-Density Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031011
. 10.1115/1.4042290
22.
Huang
,
C.
,
Bian
,
Z. G.
,
Fang
,
C. F.
,
Zhou
,
X. L.
, and
Song
,
J. Z.
,
2018
, “
Experimental and Theoretical Study on Mechanical Properties of Porous PDMS
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041009
. 10.1115/1.4039041
23.
Zhang
,
H.
,
Zhang
,
J. W.
,
Hu
,
Z. W.
,
Quan
,
L. W.
,
Shi
,
L.
,
Chen
,
J. K.
,
Xuan
,
W. P.
,
Zhang
,
Z. C.
,
Dong
,
S. R.
, and
Luo
,
J. K.
,
2019
, “
Waist-Wearable Wireless Respiration Sensor Based on Triboelectric Effect
,”
Nano Energy
,
59
, pp.
75
83
. 10.1016/j.nanoen.2019.01.063
24.
,
C. F.
,
Wu
,
S.
,
Lu
,
B. W.
,
Zhang
,
Y. Y.
,
Du
,
Y. K.
, and
Feng
,
X.
,
2017
, “
Ultrathin Flexible Piezoelectric Sensors for Monitoring Eye Fatigue
,”
J. Micromech. Microeng.
,
28
(
2
), p.
025010
. 10.1088/1361-6439/aaa219
25.
Dagdeviren
,
C.
,
Su
,
Y. W.
,
Joe
,
P.
,
Yona
,
R.
,
Liu
,
Y. H.
,
Kim
,
Y. S.
,
Huang
,
Y. A.
,
Damadoran
,
A. R.
,
Xia
,
J.
,
Martin
,
L. W.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2014
, “
Conformable Amplified Lead Zirconate Titanate Sensors With Enhanced Piezoelectric Response for Cutaneous Pressure Monitoring
,”
Nat. Commun.
,
5
(
7697
), p.
4496
. 10.1038/ncomms5496
26.
Park
,
D. Y.
,
Joe
,
D. J.
,
Kim
,
D. H.
,
Park
,
H.
,
Han
,
J. H.
,
Jeong
,
C. K.
,
Park
,
H.
,
Park
,
J. G.
,
Joung
,
B.
, and
Lee
,
K. J.
,
2017
, “
Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors
,”
Adv. Mater.
,
29
(
37
), p.
1702308
. 10.1002/adma.201702308
27.
Chen
,
Y. H.
,
Lu
,
S. Y.
,
Zhang
,
S. S.
,
Li
,
Y.
,
Qu
,
Z.
,
Chen
,
Y.
,
Lu
,
B. W.
,
Wang
,
X. Y.
, and
Feng
,
X.
,
2017
, “
Skin-Like Biosensor System via Electrochemical Channels for Noninvasive Blood Glucose Monitoring
,”
Sci. Adv.
,
3
(
12
), p.
e1701629
. 10.1126/sciadv.1701629
28.
Huang
,
X.
,
Liu
,
Y. H.
,
Chen
,
K. L.
,
Shin
,
W. J.
,
Lu
,
C. J.
,
Kong
,
G. W.
,
Patnaik
,
D.
,
Lee
,
S. H.
,
Cortes
,
J. F.
, and
Rogers
,
J. A.
,
2014
, “
Stretchable, Wireless Sensors and Functional Substrates for Epidermal Characterization of Sweat
,”
Small
,
10
(
15
), pp.
3083
3090
. 10.1002/smll.201400483
29.
Zhang
,
Y. H.
,
Webb
,
R. C.
,
Luo
,
H. Y.
,
Xue
,
Y. G.
,
Kurniawan
,
J.
,
Cho
,
N. H.
,
Krishnan
,
S.
,
Li
,
Y. H.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2016
, “
Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature
,”
Adv. Healthc. Mater.
,
5
(
1
), pp.
119
127
. 10.1002/adhm.201500110
30.
Shi
,
Y.
,
Dagdeviren
,
C.
,
Rogers
,
J. A.
,
Gao
,
C. F.
, and
Huang
,
Y. G.
,
2016
, “
An Analytic Model for Skin Modulus Measurement via Conformal Piezoelectric Systems
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091007
. 10.1115/1.4030820
31.
Viventi
,
J.
,
Kim
,
D. H.
,
Vigeland
,
L.
,
Frechette
,
E. S.
,
Blanco
,
J. A.
,
Kim
,
Y. S.
,
Avrin
,
A. E.
,
Tiruvadi
,
V. R.
,
Hwang
,
S. W.
,
Vanleer
,
A. C.
,
Wulsin
,
D. F.
,
Davis
,
K.
,
Gelber
,
C. E.
,
Palmer
,
L.
,
Van der Spiegel
,
J.
,
Wu
,
J.
,
Xiao
,
J. L.
,
Huang
,
Y. G.
,
Contreras
,
D.
,
Rogers
,
J. A.
, and
Litt
,
B.
,
2011
, “
Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity In Vivo
,”
Nat. Neurosci.
,
14
(
12
), pp.
1599
1605
. 10.1038/nn.2973
32.
Dagdeviren
,
C.
,
Javid
,
F.
,
Joe
,
P.
,
Erlach
,
T. V.
,
Bensel
,
T.
,
Wei
,
Z. J.
,
Saxton
,
S.
,
Cleveland
,
C.
,
Booth
,
L.
, and
Mcdonnell
,
S.
,
2017
, “
Flexible Piezoelectric Devices for Gastrointestinal Motility Sensing
,”
Nat. Biomed. Eng.
,
1
(
10
), pp.
807
817
. 10.1038/s41551-017-0140-7
33.
Lu
,
B. W.
,
Chen
,
Y.
,
Ou
,
D. P.
,
Chen
,
H.
,
Diao
,
L. W.
,
Zhang
,
W.
,
Zheng
,
J.
,
Ma
,
W. G.
,
Sun
,
L. Z.
, and
Feng
,
X.
,
2015
, “
Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy
,”
Sci. Rep.
,
5
, p.
16065
. 10.1038/srep16065
34.
Dagdeviren
,
C.
,
Yang
,
B. D.
,
Su
,
Y. W.
,
Tran
,
P. L.
,
Joe
,
P.
,
Anderson
,
E.
,
Xia
,
J.
,
Doraiswamy
,
V.
,
Dehdashti
,
B.
,
Feng
,
X.
,
Lu
,
B. W.
,
Poston
,
R.
,
Khalpey
,
Z.
,
Ghaffari
,
R.
,
Huang
,
Y. G.
,
Slepian
,
M. J.
, and
Rogers
,
J. A.
,
2014
, “
Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
5
), pp.
1927
1932
. 10.1073/pnas.1317233111
35.
Su
,
Y. W.
,
Dagdeviren
,
C.
, and
Li
,
R.
,
2015
, “
Measured Output Voltages of Piezoelectric Devices Depend on the Resistance of Voltmeter
,”
Adv. Funct. Mater.
,
25
(
33
), pp.
5320
5325
. 10.1002/adfm.201502280
36.
Chen
,
Y.
,
Lu
,
B. W.
,
Ou
,
D. P.
, and
Feng
,
X.
,
2015
, “
Mechanics of Flexible and Stretchable Piezoelectrics for Energy Harvesting
,”
Sci. China Phys. Mech. Astron.
,
58
(
9
), p.
594601
. 10.1007/s11433-015-5692-5
37.
Wang
,
X. W.
,
Liu
,
Z.
, and
Zhang
,
T.
,
2017
, “
Flexible Sensing Electronics for Wearable/Attachable Health Monitoring
,”
Small
,
13
(
25
), p.
1602790
. 10.1002/smll.201602790
38.
,
C. F.
,
Zhang
,
Y. Y.
,
Zhang
,
H.
,
Zhang
,
Z. C.
,
Shen
,
M. Z.
, and
Chen
,
Y. S.
,
2019
, “
Generalized Optimization Method for Energy Conversion and Storage Efficiency of Nanoscale Flexible Piezoelectric Energy Harvesters
,”
Energ. Convers. Manage.
,
182
, pp.
34
40
. 10.1016/j.enconman.2018.12.058
39.
Zhang
,
H.
,
Huang
,
K. X.
,
Zhang
,
Z. C.
,
Xiang
,
T.
, and
Quan
,
L. W.
,
2019
, “
Piezoelectric Energy Harvesting From Roadways Based on Pavement Compatible Package
,”
ASME J. Appl. Mech.
,
86
(
9
), p.
091012
. 10.1115/1.4044140
40.
Zhang
,
Y. Y.
,
Chen
,
Y. S.
,
Lu
,
B. W.
,
,
C. F.
, and
Feng
,
X.
,
2016
, “
Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061007
. 10.1115/1.4032994
41.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2019
, “
A New Geometrically Exact Model for Buckling and Postbuckling Statics and Dynamics of Beamss
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071001
. 10.1115/1.4043144
42.
Lang
,
R. M.
,
Badano
,
L. P.
,
Moravi
,
V.
,
Afilalo
,
J.
,
Armstrong
,
A.
,
Ernande
,
L.
,
Flachskampf
,
F. A.
,
Foster
,
E.
,
Goldstein
,
S. A.
, and
Kuznetsova
,
T.
,
2015
, “
Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update From the American Society of Echocardiography and the European Association of Cardiovascular Imaging
,”
J. Am. Soc. Echocardiogr.
,
28
(
1
), pp.
1
39.e14
. 10.1016/j.echo.2014.10.003
43.
Teichholz
,
L. E.
,
Kreulen
,
T.
,
Herman
,
M. V.
, and
Gorlin
,
R.
,
1976
, “
Problems in Echocardiographic Volume Determinations: Echocardiographic-Angiographic Correlations in the Presence of Absence of Asynergy
,”
Am. J. Cardiol.
,
37
(
1
), pp.
7
11
. 10.1016/0002-9149(76)90491-4
44.
Arevalo
,
H. J.
,
Fijoy
,
V.
,
Eliseo
,
G.
,
Alexander
,
J.
,
Peter
,
M.
,
Wu
,
K. C.
, and
Trayanova
,
N. A.
,
2016
, “
Arrhythmia Risk Stratification of Patients After Myocardial Infarction Using Personalized Heart Models
,”
Nat. Commun.
,
7
, p.
11437
. 10.1038/ncomms11437
45.
Yan
,
Z. C.
,
Pan
,
T. S.
,
Wang
,
D. K.
,
Li
,
J. C.
,
Jin
,
L.
,
Huang
,
L.
,
Jiang
,
J. H.
,
Qi
,
Z. H.
,
Zhang
,
H. L.
,
Gao
,
M.
,
Yang
,
W. Q.
, and
Lin
,
Y.
,
2019
, “
Stretchable Micromotion Sensor With Enhanced Sensitivity Using Serpentine Layout
,”
ACS Appl. Mater. Inter.
,
11
(
13
), pp.
12261
12271
. 10.1021/acsami.8b22613
You do not currently have access to this content.