As fiber-reinforced polymer matrix composites are often cured from stress-free high temperature, when subjected to ambient temperature, both the mismatch of the coefficient of linear thermal expansion between the fiber and the matrix and the dependence of material properties on temperature will influence the interfacial behavior. Thus, it is necessary to provide an insight into the mechanism of temperature effects on the thermomechanical properties and behaviors along the interface. In this work, we conducted microbond tests of the glass fiber–epoxy material system at controlled testing temperature (Tt). A modified interface model is formulated and implemented to study the interfacial decohesion and frictional sliding behavior of microbond tests at different Tt. With proper cohesive parameters obtained, the model can predict temperature-dependent interfacial behaviors in fiber-reinforced composites. Both the slope of the peak force as well as the measured force at the stage of frictional sliding decrease with Tt in a wide range of the length of microdroplet-embedded fiber (le). The interfacial shear strength (IFSS) keeps almost constant at Tt ≤ 40 °C and decreases with le when temperature is above 40 °C. The average frictional stress (τfAverage) along the interface increases with le when temperature is below 80 °C but is almost constant when temperature is above or equal to 80 °C. Overall, in the same range of le, τfAverage is greater when Tt is at low temperature.

References

1.
Beggs
,
K. M.
,
Servinis
,
L.
,
Gengenbach
,
T. R.
,
Huson
,
M. G.
,
Fox
,
B. L.
, and
Henderson
,
L. C.
,
2015
, “
A Systematic Study of Carbon Fibre Surface Grafting Via in Situ Diazonium Generation for Improved Interfacial Shear Strength in Epoxy Matrix Composites
,”
Compos. Sci. Technol.
,
118
, pp.
31
38
.
2.
Li
,
H.
,
Wang
,
Y.
,
Zhang
,
C.
, and
Zhang
,
B.
,
2016
, “
Effects of Thermal Histories on Interfacial Properties of Carbon Fiber/Polyamide 6 Composites: Thickness, Modulus, Adhesion and Shear Strength
,”
Compos. Part A
,
85
, pp.
31
39
.
3.
Liu
,
B.
,
Liu
,
Z.
,
Wang
,
X.
,
Zhang
,
G.
,
Long
,
S.
, and
Yang
,
J.
,
2013
, “
Interfacial Shear Strength of Carbon Fiber Reinforced Polyphenylene Sulfide Measured by the Microbond Test
,”
Polym. Test.
,
32
(
4
), pp.
724
730
.
4.
Minty
,
R.
,
Thomason
,
J.
, and
Petersen
,
H.
,
2015
, “
The Role of the Epoxy Resin: Curing Agent Ratio in Composite Interfacial Strength by Single Fibre Microbond Test
,”
20th International Conference on Composite Materials
,
Copenhagen
,
July 19–24
.
5.
Gao
,
S. L.
, and
Kim
,
J. K.
,
2001
, “
Cooling Rate Influences in Carbon Fibre/PEEK Composites. Part II: Interlaminar Fracture Toughness
,”
Compos. Part A
,
32
(
6
), pp.
763
774
.
6.
Zabihi
,
O.
,
Khayyam
,
H.
,
Fox
,
B. L.
, and
Naebe
,
M.
,
2015
, “
Enhanced Thermal Stability and Lifetime of Epoxy Nanocomposites Using Covalently Functionalized Clay: Experimental and Modelling
,”
New J. Chem.
,
39
(
3
), pp.
2269
2278
.
7.
Xu
,
G. R.
,
Xu
,
M. J.
, and
Li
,
B.
,
2014
, “
Synthesis and Characterization of a Novel Epoxy Resin Based on Cyclotriphosphazene and Its Thermal Degradation and Flammability Performance
,”
Polym. Degrad. Stab.
,
109
, pp.
240
248
.
8.
Pan
,
Y.
, and
Pelegri
,
A.
,
2010
, “
Influence of Matrix Plasticity and Residual Thermal Stress on Interfacial Debonding of a Single Fiber Composite
,”
J. Mech. Mater. Struct.
,
5
(
1
), pp.
129
142
.
9.
Hoa
,
S. V.
,
Ouellette
,
P.
, and
Ngo
,
T. D.
,
2009
, “
Determination of Shrinkage and Modulus Development of Thermosetting Resins
,”
J. Compos. Mater.
,
43
(
7
), pp.
783
803
.
10.
Li
,
C.
,
Potter
,
K.
,
Wisnom
,
M. R.
, and
Stringer
,
G.
,
2004
, “
In-Situ Measurement of Chemical Shrinkage of MY750 Epoxy Resin by a Novel Gravimetric Method
,”
Compos. Sci. Technol.
,
64
(
1
), pp.
55
64
.
11.
Jakobsen
,
J.
,
Jensen
,
M.
, and
Andreasen
,
J. H.
,
2013
, “
Thermo-Mechanical Characterisation of In-Plane Properties for CSM E-Glass Epoxy Polymer Composite Materials Part 1: Thermal and Chemical Strain
,”
Polym. Test.
,
32
(
8
), pp.
1350
1357
.
12.
Wang
,
Y.
, and
Hahn
,
T. H.
,
2007
, “
AFM Characterization of the Interfacial Properties of Carbon Fiber Reinforced Polymer Composites Subjected to Hygrothermal Treatments
,”
Compos. Sci. Technol.
,
67
(
1
), pp.
92
101
.
13.
Thomason
,
J. L.
,
2010
, “
Dependence of Interfacial Strength on the Anisotropic Fiber Properties of Jute Reinforced Composites
,”
Polym. Compos.
,
31
(
9
), pp.
1525
1534
.
14.
Zhu
,
M.
,
Li
,
M.
,
Wu
,
Q.
,
Gu
,
Y.
,
Li
,
Y.
, and
Zhang
,
Z.
,
2013
, “
Effect of Processing Temperature on the Micro- and Macro-Interfacial Properties of Carbon Fiber/Epoxy Composites
,”
Compos. Interface
,
21
(
5
), pp.
443
453
.
15.
Thomason
,
J. L.
,
2002
, “
Interfacial Strength in Thermoplastic Composites—At Last an Industry Friendly Measurement Method?
,”
Compos. Part A
,
33
(
10
), pp.
1283
1288
.
16.
Thomason
,
J. L.
, and
Van Rooyen
,
A. A.
,
1992
, “
Transcrystallized Interphase in Thermoplastic Composites. II: Influence of Interfacial Stress, Cooling Rate, Fibre Properties and Polymer Molecular Weight
,”
J. Mater. Sci.
,
27
(
4
), pp.
897
907
.
17.
WenBo
,
L.
,
Shu
,
Z.
,
LiFeng
,
H.
,
WeiCheng
,
J.
,
Fan
,
Y.
,
XiaoFei
,
L.
, and
RongGuo
,
W.
,
2013
, “
Interfacial Shear Strength in Carbon Fiber-Reinforced Poly(Phthalazinone Ether Ketone) Composites
,”
Polym. Compos.
,
34
(
11
), pp.
1921
1926
.
18.
Thomason
,
J. L.
, and
Yang
,
L.
,
2011
, “
Temperature Dependence of the Interfacial Shear Strength in Glass-Fibre Polypropylene Composites
,”
Compos. Sci. Technol.
,
71
(
13
), pp.
1600
1605
.
19.
Detassis
,
M.
,
Pegoretti
,
A.
, and
Migliaresi
,
C.
,
1995
, “
Effect of Temperature and Strain Rate on Interfacial Shear Stress Transfer in Carbon/Epoxy Model Composites
,”
Compos. Sci. Technol.
,
53
(
1
), pp.
39
46
.
20.
Di Landro
,
L.
, and
Pegoraro
,
M.
,
1996
, “
Evaluation of Residual Stresses and Adhesion in Polymer Composites
,”
Compos. Part A
,
27
(
9
), pp.
847
853
.
21.
Wang
,
H.
,
Zhang
,
X.
,
Duan
,
Y.
, and
Meng
,
L.
,
2018
, “
Experimental and Numerical Study of the Interfacial Shear Strength in Carbon Fiber/Epoxy Resin Composite Under Thermal Loads
,”
Int. J. Polym. Sci.
,
2018
, pp.
1
8
.
22.
Wagner
,
H. D.
, and
Nairn
,
J. A.
,
1997
, “
Residual Thermal Stresses in Three Concentric Transversely Isotropic Cylinders: Application to Thermoplastic-Matrix Composites Containing a Transcrystalline Interphase
,”
Compos. Sci. Technol.
,
57
(
9–10
), pp.
1289
1302
.
23.
Thomason
,
J. L.
, and
Yang
,
L.
,
2014
, “
Temperature Dependence of the Interfacial Shear Strength in Glass-Fibre Epoxy Composites
,”
Compos. Sci. Technol.
,
96
, pp.
7
12
.
24.
Raghava
,
R. S.
,
1988
, “
Thermal Expansion of Organic and Inorganic Matrix Composites: A Review of Theoretical and Experimental Studies
,”
Polym. Compos.
,
9
(
1
), pp.
1
11
.
25.
Nairn
,
J. A.
,
1985
, “
Thermoelastic Analysis of Residual Stresses in Unidirectional, High-Performance Composites
,”
Polym. Compos.
,
6
(
2
), pp.
123
130
.
26.
Pegoretti
,
A.
,
Della Volpe
,
C.
,
Detassis
,
M.
,
Migliaresi
,
C.
, and
Wagner
,
H. D.
,
1996
, “
Thermomechanical Behaviour of Interfacial Region in Carbon Fibre/Epoxy Composites
,”
Composites, Part A
,
27
(
11
), pp.
1067
1074
.
27.
Sato
,
M.
,
Koyanagi
,
J.
,
Lu
,
X.
,
Kubota
,
Y.
,
Ishida
,
Y.
, and
Tay
,
T. E.
,
2018
, “
Temperature Dependence of Interfacial Strength of Carbon-Fiber-Reinforced Temperature-Resistant Polymer Composites
,”
Compos. Struct.
,
202
, pp.
283
289
.
28.
Yang
,
L.
, and
Thomason
,
J. L.
,
2010
, “
Interface Strength in Glass Fibre-Polypropylene Measured Using the Fibre Pull-Out and Microbond Methods
,”
Compos. Part A
,
41
(
9
), pp.
1077
1083
.
29.
Miller
,
B.
,
Muri
,
P.
, and
Rebenfeld
,
L.
,
1987
, “
A Microbond Method for Determination of the Shear Strength of a Fiber/Resin Interface
,”
Compos. Sci. Technol.
,
28
(
1
), pp.
17
32
.
30.
Li
,
Q.
,
Nian
,
G.
,
Tao
,
W.
, and
Qu
,
S.
,
2019
, “
Size Effect on Microbond Testing Interfacial Shear Strength of Fiber-Reinforced Composites
,”
J. Appl. Mech.
,
86
(
7
), p.
071004
.
31.
Nian
,
G.
,
Li
,
Q.
,
Xu
,
Q.
, and
Qu
,
S.
,
2018
, “
A Cohesive Zone Model Incorporating a Coulomb Friction Law for Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
157
, pp.
195
201
.
32.
Ghareeb
,
A.
, and
Elbanna
,
A.
,
2018
, “
On the Role of the Plaque Porous Structure in Mussel Adhesion: Implications for Adhesion Control Using Bulk Patterning
,”
J. Appl. Mech.
,
85
(
12
), p.
121003
.
33.
Ma
,
Z.
,
Yang
,
Q.
, and
Su
,
X. Y.
,
2019
, “
A Conforming Augmented Finite Element Method for Modeling Arbitrary Cracking in Solids
,”
J. Appl. Mech.
,
86
(
7
), p.
071002
.
34.
Ghareeb
,
A.
, and
Elbanna
,
A.
,
2019
, “
Adhesion Asymmetry in Peeling of Thin Films With Homogeneous Material Properties: A Geometry-Inspired Design Paradigm
,”
J. Appl. Mech.
,
86
(
7
), p.
071005
.
35.
Watanabe
,
H.
,
Yamada
,
N.
, and
Okaji
,
M.
,
2004
, “
Linear Thermal Expansion Coefficient of Silicon From 293 to 1000 K
,”
Int. J. Thermophys.
,
25
(
1
), pp.
221
236
.
36.
Snozzi
,
L.
, and
Molinari
,
J. F.
,
2013
, “
A Cohesive Element Model for Mixed Mode Loading With Frictional Contact Capability
,”
Int. J. Numer. Methods Eng.
,
93
(
5
), pp.
510
526
.
37.
Pardini
,
L. C.
, and
Manhani
,
L. G. B.
,
2002
, “
Influence of the Testing Gage Length on the Strength, Young’s Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres
,”
Mater. Res.
,
5
(
4
), pp.
411
420
.
38.
Pisanova
,
E.
,
Zhandarov
,
S.
,
Mäder
,
E.
,
Ahmad
,
I.
, and
Young
,
R. J.
,
2001
, “
Three Techniques of Interfacial Bond Strength Estimation From Direct Observation of Crack Initiation and Propagation in Polymer–Fibre Systems
,”
Compos. Part A
,
32
(
3–4
), pp.
435
443
.
You do not currently have access to this content.