The interlayer attraction force between concentric carbon nanotubes (CNTs) plays an important role in CNT-based nanodevices. However, the precise measurement of the interlayer attraction force remains to date a challenge. Although theoretical investigations have identified the dependence of the interlayer attraction force on the tube radius, no explicit relation for such dependence has been established so far. Here, based on an analytical model, we find that the interlayer attraction force between two telescoping concentric CNTs is proportional to the mean (but not the inner nor the outer) radius of the contacting two tubes and consequently propose an explicit expression that relates the interlayer attraction force with the mean radius as well as the interlayer spacing. We also implement the effect of temperature in the present expression based on the linear dependence of the attraction force on temperature. The present expression can be compared with the existing theoretical and experimental results, offering an efficient way to evaluate the interlayer attraction force in the nanodevices composed of concentric CNTs.

References

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.
2.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), p.
666
.
3.
Dai
,
H.
,
Hafner
,
J. H.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
,
1996
, “
Nanotubes as Nanoprobes in Scanning Probe Microscopy
,”
Nature
,
384
(
6605
), pp.
147
150
.
4.
Moore
,
K. E.
,
Tune
,
D. D.
, and
Flavel
,
B. S.
,
2015
, “
Double-Walled Carbon Nanotube Processing
,”
Adv. Mater.
,
27
(
20
), pp.
3105
3137
.
5.
Maslov
,
L.
,
2006
, “
Concept of Nonvolatile Memory Based on Multiwall Carbon Nanotubes
,”
Nanotechnology
,
17
(
10
), pp.
2475
2482
.
6.
Bunch
,
J. S.
,
Verbridge
,
S. S.
,
Alden
,
J. S.
,
van der Zande
,
A. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2008
, “
Impermeable Atomic Membranes From Graphene Sheets
,”
Nano Lett.
,
8
(
8
), pp.
2458
2462
.
7.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nat. Nanotechnol.
,
6
(
9
), pp.
543
546
.
8.
Fang
,
H.
, and
Xu
,
J.
,
2013
, “
Stick-Slip Effect in a Vibration-Driven System With Dry Friction: Sliding Bifurcations and Optimization
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051001
.
9.
Feng
,
X.
,
Kwon
,
S.
,
Park
,
J. Y.
, and
Salmeron
,
M.
,
2013
, “
Superlubric Sliding of Graphene Nanoflakes on Graphene
,”
ACS Nano
,
7
(
2
), pp.
1718
1724
.
10.
Luo
,
M.
,
Zhang
,
Z.
, and
Yakobson
,
B. I.
,
2013
, “
Tunable Gigahertz Oscillators of Gliding Incommensurate Bilayer Graphene Sheets
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040906
.
11.
Tuzun
,
R. E.
,
Noid
,
D. W.
, and
Sumpter
,
B. G.
,
1995
, “
The Dynamics of Molecular Bearings
,”
Nanotechnology
,
6
(
2
), pp.
64
74
.
12.
Damnjanović
,
M.
,
Milošević
,
I.
,
Vuković
,
T.
, and
Sredanović
,
R.
,
1999
, “
Full Symmetry, Optical Activity, and Potentials of Single-Wall and Multiwall Nanotubes
,”
Phys. Rev. B
,
60
(
4
), pp.
2728
2739
.
13.
Papadakis
,
S. J.
,
Hall
,
A. R.
,
Williams
,
P. A.
,
Vicci
,
L.
,
Falvo
,
M. R.
,
Superfine
,
R.
, and
Washburn
,
S.
,
2004
, “
Resonant Oscillators With Carbon-Nanotube Torsion Springs
,”
Phys. Rev. Lett.
,
93
(
14
), p.
146101
.
14.
Feng
,
X. L.
,
White
,
C. J.
,
Hajimiri
,
A.
, and
Roukes
,
M. L.
,
2008
, “
A Self-Sustaining Ultrahigh-Frequency Nanoelectromechanical Oscillator
,”
Nat. Nanotechnol.
,
3
(
7
), pp.
342
346
.
15.
Ru
,
C. Q.
,
2000
, “
Effect of Van Der Waals Forces on Axial Buckling of a Double-Walled Carbon Nanotube
,”
J. Appl. Phys.
,
87
(
10
), pp.
7227
7231
.
16.
Chang
,
T.
,
Li
,
G.
, and
Guo
,
X.
,
2005
, “
Elastic Axial Buckling of Carbon Nanotubes Via a Molecular Mechanics Model
,”
Carbon
,
43
(
2
), pp.
287
294
.
17.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
,
2004
, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
69
(
11
), p.
115429
.
18.
Chang
,
T.
,
2008
, “
Dominoes in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
101
(
17
), p.
175501
.
19.
Cheng
,
Y.
,
Maria Pugno
,
N.
,
Shi
,
X.
,
Chen
,
B.
, and
Gao
,
H.
,
2013
, “
Surface Energy-Controlled Self-Collapse of Carbon Nanotube Bundles With Large and Reversible Volumetric Deformation
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040902
.
20.
Zheng
,
Q.
, and
Liu
,
Z.
,
2014
, “
Experimental Advances in Superlubricity
,”
Friction
,
2
(
2
), pp.
182
192
.
21.
Guo
,
W.
,
Yin
,
J.
,
Qiu
,
H.
,
Guo
,
Y.
,
Wu
,
H.
, and
Xue
,
M.
,
2014
, “
Friction of Low-Dimensional Nanomaterial Systems
,”
Friction
,
2
(
3
), pp.
209
225
.
22.
Kis
,
A.
, and
Zettl
,
A.
,
2008
, “
Nanomechanics of Carbon Nanotubes
,”
Philos. T. Roy. Soc. A
,
366
(
1870
), pp.
1591
1611
.
23.
Zhang
,
S.
,
Ma
,
T.
,
Erdemir
,
A.
, and
Li
,
Q.
,
2018
, “
Tribology of Two-Dimensional Materials: From Mechanisms to Modulating Strategies
,”
Mater. Today.
in press.
24.
Kolmogorov
,
A. N.
, and
Crespi
,
V. H.
,
2000
, “
Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
85
(
22
), pp.
4727
4730
.
25.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
(
5453
), p.
637
.
26.
Cumings
,
J.
, and
Zettl
,
A.
,
2000
, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
,
289
(
5479
), p.
602
.
27.
Zheng
,
Q.
, and
Jiang
,
Q.
,
2002
, “
Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
88
(
4
), p.
045503
.
28.
Jensen
,
K.
,
Girit
,
Ç
,
Mickelson
,
W.
, and
Zettl
,
A.
,
2006
, “
Tunable Nanoresonators Constructed From Telescoping Nanotubes
,”
Phys. Rev. Lett.
,
96
(
21
), p.
215503
.
29.
Cumings
,
J.
, and
Zettl
,
A.
,
2004
, “
Localization and Nonlinear Resistance in Telescopically Extended Nanotubes
,”
Phys. Rev. Lett.
,
93
(
8
), p.
086801
.
30.
Deshpande
,
V. V.
,
Chiu
,
H. Y.
,
Postma
,
H. W. C.
,
Mikó
,
C.
,
Forró
,
L.
, and
Bockrath
,
M.
,
2006
, “
Carbon Nanotube Linear Bearing Nanoswitches
,”
Nano Lett.
,
6
(
6
), pp.
1092
1095
.
31.
Leng
,
J.
,
Guo
,
Z.
,
Zhang
,
H.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2016
, “
Negative Thermophoresis in Concentric Carbon Nanotube Nanodevices
,”
Nano Lett.
,
16
(
10
), pp.
6396
6402
.
32.
Girifalco
,
L. A.
, and
Lad
,
R. A.
,
1956
, “
Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System
,”
J. Chem. Phys.
,
25
(
4
), pp.
693
697
.
33.
Kis
,
A.
,
Jensen
,
K.
,
Aloni
,
S.
,
Mickelson
,
W.
, and
Zettl
,
A.
,
2006
, “
Interlayer Forces and Ultralow Sliding Friction in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
97
(
2
), p.
025501
.
34.
Moore
,
K. E.
,
Cretu
,
O.
,
Mitome
,
M.
, and
Golberg
,
D.
,
2016
, “
In Situ Cyclic Telescoping of Multi-Walled Carbon Nanotubes in a Transmission Electron Microscope
,”
Carbon
,
107
, pp.
225
232
.
35.
Zhang
,
R.
,
Ning
,
Z.
,
Xu
,
Z.
,
Zhang
,
Y.
,
Xie
,
H.
,
Ding
,
F.
,
Chen
,
Q.
,
Zhang
,
Q.
,
Qian
,
W.
,
Cui
,
Y.
, and
Wei
,
F.
,
2016
, “
Interwall Friction and Sliding Behavior of Centimeters Long Double-Walled Carbon Nanotubes
,”
Nano Lett.
,
16
(
2
), pp.
1367
1374
.
36.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the Van Der Waals Force
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2436
2452
.
37.
Liu
,
P.
,
Zhang
,
Y. W.
, and
Lu
,
C.
,
2006
, “
Analysis of the Oscillatory Behavior of Double-Walled Carbon Nanotube-Based Oscillators
,”
Carbon
,
44
(
1
), pp.
27
36
.
38.
Zhao
,
J.
,
Jiang
,
J.-W.
,
Jia
,
Y.
,
Guo
,
W.
, and
Rabczuk
,
T.
,
2013
, “
A Theoretical Analysis of Cohesive Energy Between Carbon Nanotubes, Graphene and Substrates
,”
Carbon
,
57
, pp.
108
119
.
39.
Hill
,
J. M.
,
Thamwattana
,
N.
, and
Cox
,
B. J.
,
2007
, “
Mechanics of Atoms and Fullerenes in Single-Walled Carbon Nanotubes. I. Acceptance and Suction Energies
,”
Proc. R. Soc. A
,
463
(
2078
), pp.
461
476
.
40.
Zhu
,
C.
,
Chen
,
Y.
,
Liu
,
R.
, and
Zhao
,
J.
,
2018
, “
Buckling Behaviors of Single-Walled Carbon Nanotubes Inserted With a Linear Carbon-Atom Chain
,”
Nanotechnology
,
29
(
33
), p.
335704
.
41.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
42.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter.
,
14
(
4
), pp.
783
802
.
43.
Evans
,
D. J.
, and
Holian
,
B. L.
,
1985
, “
The Nose–Hoover Thermostat
,”
J. Chem. Phys.
,
83
(
8
), pp.
4069
4074
.
44.
Bichoutskaia
,
E.
,
Heggie
,
M. I.
,
Popov
,
A. M.
, and
Lozovik
,
Y. E.
,
2006
, “
Interwall Interaction and Elastic Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
73
(
4
), p.
045435
.
45.
Rivera
,
J. L.
,
McCabe
,
C.
, and
Cummings
,
P. T.
,
2003
, “
Oscillatory Behavior of Double-Walled Nanotubes Under Extension: A Simple Nanoscale Damped Spring
,”
Nano Lett.
,
3
(
8
), pp.
1001
1005
.
46.
Ren
,
W.
,
Li
,
F.
,
Chen
,
J.
,
Bai
,
S.
, and
Cheng
,
H.-M.
,
2002
, “
Morphology, Diameter Distribution and Raman Scattering Measurements of Double-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane
,”
Chem. Phys. Lett.
,
359
(
3
), pp.
196
202
.
47.
Kharissova
,
O. V.
, and
Kharisov
,
B. I.
,
2014
, “
Variations of Interlayer Spacing in Carbon Nanotubes
,”
RSC Adv.
,
4
(
58
), pp.
30807
30815
.
48.
Legoas
,
S. B.
,
Coluci
,
V. R.
,
Braga
,
S. F.
,
Coura
,
P. Z.
,
Dantas
,
S. O.
, and
Galvão
,
D. S.
,
2003
, “
Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
90
(
5
), p.
055504
.
49.
Legoas
,
S. B.
,
Coluci
,
V. R.
,
Braga
,
S. F.
,
Coura
,
P. Z.
,
Dantas
,
S. O.
, and
Galvao
,
D. S.
,
2004
, “
Gigahertz Nanomechanical Oscillators Based on Carbon Nanotubes
,”
Nanotechnology
,
15
(
4
), pp.
S184
S189
.
50.
Ansari
,
R.
,
Sadeghi
,
F.
, and
Ajori
,
S.
,
2017
, “
Oscillation Characteristics of Carbon Nanotori Molecules Along Carbon Nanotubes Under Various System Parameters
,”
Eur. J. Mech. A-Solid
,
62
, pp.
67
79
.
51.
Budrikis
,
Z.
, and
Zapperi
,
S.
,
2016
, “
Temperature-Dependent Adhesion of Graphene Suspended on a Trench
,”
Nano Lett.
,
16
(
1
), pp.
387
391
.
52.
Guo
,
Z.
,
Zhang
,
H.
,
Li
,
J.
,
Leng
,
J.
,
Zhang
,
Y.
, and
Chang
,
T.
,
2018
, “
An Intrinsic Energy Conversion Mechanism Via Telescopic Extension and Retraction of Concentric Carbon Nanotubes
,”
Nanoscale
,
10
(
10
), pp.
4897
4903
.
53.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2017
, “
Gas-like Adhesion of Two-Dimensional Materials Onto Solid Surfaces
,”
Sci. Rep.
,
7
(
1
), p.
159
.
54.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2012
, “
Mechanics of Thermophoretic and Thermally Induced Edge Forces in Carbon Nanotube Nanodevices
,”
J. Mech. Phys. Solids
,
60
(
9
), pp.
1676
1687
.
55.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2011
, “
Thermal-Induced Edge Barriers and Forces in Interlayer Interaction of Concentric Carbon Nanotubes
,”
Phys. Rev. Lett.
,
107
(
10
), p.
105502
.
56.
Li
,
J.
,
Zhang
,
H.
,
Guo
,
Z.
,
Chang
,
T.
, and
Gao
,
H.
,
2015
, “
Edge Forces in Contacting Graphene Layers
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101011
.
You do not currently have access to this content.