Abstract

This paper investigates the nonlinear static response as well as nonlinear forced dynamics of a clamped–clamped beam actuated by piezoelectric patches partially covering the beam from both sides. This study is the first to develop a high-dimensional nonlinear model for such a piezoelectric-beam configuration. The nonlinear dynamical resonance characteristics of the electromechanical system are examined under simultaneous DC and AC piezoelectric actuations, while highlighting the effects of modal energy transfer and internal resonances. A multiphysics coupled model of the beam-piezoelectric system is proposed based on the nonlinear beam theory of Bernoulli–Euler and the piezoelectric constitutive equations. The discretized model of the system is obtained with the help of the Galerkin weighted residual technique while retaining 32 degrees-of-freedom. Three-dimensional finite element analysis is conducted as well in the static regime to validate the developed model and numerical simulation. It is shown that the response of the system in the nonlinear resonant region is strongly affected by a three-to-one internal resonance.

References

1.
Bayat
,
A.
, and
Gaitanaros
,
S.
,
2019
, “
Elastic Wave Propagation in Open-Cell Foams
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051008
. 10.1115/1.4042894
2.
Fang
,
X.
,
Chuang
,
K. C.
,
Jin
,
X.
, and
Huang
,
Z.
,
2018
, “
Band-Gap Properties of Elastic Metamaterials With Inerter-Based Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071010
. 10.1115/1.4039898
3.
Goodpaster
,
B. A.
, and
Harne
,
R. L.
,
2018
, “
Analytical Modeling and Impedance Characterization of the Nonlinear Dynamics of Thermomechanically Coupled Structures
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081010
. 10.1115/1.4040243
4.
Kozuch
,
C. D.
, and
Jasiuk
,
I. M.
,
2018
, “
Optimization of Structures Made From Composites With Elliptical Inclusions
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121006
. 10.1115/1.4041225
5.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Three-Dimensional Nonlinear Size-Dependent Behaviour of Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
71
, pp.
1
14
. 10.1016/j.ijengsci.2013.04.003
6.
Louhghalam
,
A.
,
Pellenq
,
R. J. M.
, and
Ulm
,
F. J.
,
2018
, “
Thermalizing and Damping in Structural Dynamics
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081001
. 10.1115/1.4040080
7.
Prasad
,
R.
, and
Sarkar
,
A.
,
2019
, “
Broadband Vibration Isolation for Rods and Beams Using Periodic Structure Theory
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021004
. 10.1115/1.4042011
8.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Chaotic Motion of a Parametrically Excited Microbeam
,”
Int. J. Eng. Sci.
,
96
, pp.
34
45
. 10.1016/j.ijengsci.2015.07.004
9.
Vatankhahghadim
,
B.
, and
Damaren
,
C. J.
,
2019
, “
Deployment of a Membrane Attached to Two Axially Moving Beams
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031003
. 10.1115/1.4042134
10.
Nakamura
,
T.
,
2019
, “
Local Stress-Field Reconstruction Around Holes in a Plate Using Strain Monitoring Data and Stress Function
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031005
. 10.1115/1.4042135
11.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Nonlinear Dynamics of Microplates
,”
Int. J. Eng. Sci.
,
86
, pp.
60
73
. 10.1016/j.ijengsci.2014.10.004
12.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Nonlinear Dynamical Behaviour of Geometrically Imperfect Microplates Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
90
, pp.
133
144
. 10.1016/j.ijmecsci.2014.11.002
13.
Gholipour
,
A.
,
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
In-Plane and Out-of-Plane Nonlinear Size-Dependent Dynamics of Microplates
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1771
1785
. 10.1007/s11071-014-1773-7
14.
Liu
,
S.
,
Ha
,
T.
, and
Lu
,
N.
,
2019
, “
Experimentally and Numerically Validated Analytical Solutions to Nonbuckling Piezoelectric Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051010
. 10.1115/1.4042570
15.
Luo
,
Y.
,
Zhang
,
C.
,
Chen
,
W.
, and
Yang
,
J.
,
2019
, “
Piezotronic Effect of a Thin Film With Elastic and Piezoelectric Semiconductor Layers Under a Static Flexural Loading
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051003
. 10.1115/1.4042573
16.
Yuan
,
T. C.
,
Yang
,
J.
, and
Chen
,
L. Q.
,
2018
, “
Nonparametric Identification of Nonlinear Piezoelectric Mechanical Systems
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111008
. 10.1115/1.4040949
17.
Zhang
,
H.
,
Shen
,
M.
,
Zhang
,
Y.
,
Chen
,
Y.
, and
,
C.
,
2018
, “
Identification of Static Loading Conditions Using Piezoelectric Sensor Arrays
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011008
. 10.1115/1.4038426
18.
Farokhi
,
H.
,
Ghayesh
,
M. H.
,
Gholipour
,
A.
, and
Hussain
,
S.
,
2017
, “
Motion Characteristics of Bilayered Extensible Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
112
, pp.
1
17
. 10.1016/j.ijengsci.2016.09.007
19.
Ghayesh
,
M. H.
,
2018
, “
Functionally Graded Microbeams: Simultaneous Presence of Imperfection and Viscoelasticity
,”
Int. J. Mech. Sci.
,
140
, pp.
339
350
. 10.1016/j.ijmecsci.2018.02.037
20.
Ghayesh
,
M. H.
,
2018
, “
Nonlinear Vibration Analysis of Axially Functionally Graded Shear-Deformable Tapered Beams
,”
Appl. Math. Model.
,
59
, pp.
583
596
. 10.1016/j.apm.2018.02.017
21.
Ghayesh
,
M. H.
,
2018
, “
Dynamics of Functionally Graded Viscoelastic Microbeams
,”
Int. J. Eng. Sci.
,
124
, pp.
115
131
. 10.1016/j.ijengsci.2017.11.004
22.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2018
, “
Supercritical Nonlinear Parametric Dynamics of Timoshenko Microbeams
,”
Commun. Nonlinear Sci. Numer. Simul.
,
59
, pp.
592
605
. 10.1016/j.cnsns.2017.11.033
23.
Irschik
,
H.
,
2002
, “
A Review on Static and Dynamic Shape Control of Structures by Piezoelectric Actuation
,”
Eng. Struct.
,
24
(
1
), pp.
5
11
. 10.1016/S0141-0296(01)00081-5
24.
Kumar
,
K. R.
, and
Narayanan
,
S.
,
2008
, “
Active Vibration Control of Beams With Optimal Placement of Piezoelectric Sensor/Actuator Pairs
,”
Smart Mater. Struct.
,
17
(
5
), p.
055008
. 10.1088/0964-1726/17/5/055008
25.
Raja
,
S.
,
Prathap
,
G.
, and
Sinha
,
P.
,
2002
, “
Active Vibration Control of Composite Sandwich Beams With Piezoelectric Extension-Bending and Shear Actuators
,”
Smart Mater. Struct.
,
11
(
1
), p.
63
. 10.1088/0964-1726/11/1/307
26.
Vasques
,
C.
, and
Rodrigues
,
J. D.
,
2006
, “
Active Vibration Control of Smart Piezoelectric Beams: Comparison of Classical and Optimal Feedback Control Strategies
,”
Comput. Struct.
,
84
(
22–23
), pp.
1402
1414
. 10.1016/j.compstruc.2006.01.026
27.
Halim
,
M. A.
, and
Park
,
J. Y.
,
2014
, “
Theoretical Modeling and Analysis of Mechanical Impact Driven and Frequency Up-Converted Piezoelectric Energy Harvester for Low-Frequency and Wide-Bandwidth Operation
,”
Sens. Actuators A
,
208
, pp.
56
65
. 10.1016/j.sna.2013.12.033
28.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2017
, “
An Impact-Engaged Two-Degrees-of-Freedom Piezoelectric Energy Harvester for Wideband Operation
,”
Procedia Eng.
,
173
, pp.
1463
1470
. 10.1016/j.proeng.2016.12.216
29.
Huicong
,
L.
,
Chengkuo
,
L.
,
Takeshi
,
K.
,
Cho Jui
,
T.
, and
Chenggen
,
Q.
,
2012
, “
Investigation of a MEMS Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p.
035005
. 10.1088/0964-1726/21/3/035005
30.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Piezoelectric MEMS-Based Wideband Energy Harvesting Systems Using a Frequency-Up-Conversion Cantilever Stopper
,”
Sens. Actuators A
,
186
, pp.
242
248
. 10.1016/j.sna.2012.01.033
31.
Liu
,
S.
,
Cheng
,
Q.
,
Zhao
,
D.
, and
Feng
,
L.
,
2016
, “
Theoretical Modeling and Analysis of Two-Degree-of-Freedom Piezoelectric Energy Harvester With Stopper
,”
Sens. Actuators A
,
245
, pp.
97
105
. 10.1016/j.sna.2016.04.060
32.
Lee
,
H.-C.
,
Park
,
J.-H.
,
Park
,
J.-Y.
,
Nam
,
H.-J.
, and
Bu
,
J.-U.
,
2005
, “
Design, Fabrication and RF Performances of Two Different Types of Piezoelectrically Actuated Ohmic MEMS Switches
,”
J. Micromech. Microeng.
,
15
(
11
), p.
2098
. 10.1088/0960-1317/15/11/015
33.
Narita
,
F.
,
Shindo
,
Y.
, and
Mikami
,
M.
,
2005
, “
Analytical and Experimental Study of Nonlinear Bending Response and Domain Wall Motion in Piezoelectric Laminated Actuators Under AC Electric Fields
,”
Acta Mater.
,
53
(
17
), pp.
4523
4529
. 10.1016/j.actamat.2005.05.044
34.
Wang
,
Q.
, and
Quek
,
S. T.
,
2000
, “
Flexural Vibration Analysis of Sandwich Beam Coupled With Piezoelectric Actuator
,”
Smart Mater. Struct.
,
9
(
1
), p.
103
. 10.1088/0964-1726/9/1/311
35.
Bowen
,
C. R.
,
Giddings
,
P. F.
,
Salo
,
A. I.
, and
Kim
,
H. A.
,
2011
, “
Modeling and Characterization of Piezoelectrically Actuated Bistable Composites
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
9
), pp.
1737
1750
. 10.1109/TUFFC.2011.2011
36.
Ghazavi
,
M.-R.
,
Rezazadeh
,
G.
, and
Azizi
,
S.
,
2010
, “
Pure Parametric Excitation of a Micro Cantilever Beam Actuated by Piezoelectric Layers
,”
Appl. Math. Model.
,
34
(
12
), pp.
4196
4207
. 10.1016/j.apm.2010.04.017
37.
Mahmoodi
,
S. N.
,
Jalili
,
N.
, and
Ahmadian
,
M.
,
2010
, “
Subharmonics Analysis of Nonlinear Flexural Vibrations of Piezoelectrically Actuated Microcantilevers
,”
Nonlinear Dyn.
,
59
(
3
), pp.
397
409
. 10.1007/s11071-009-9546-4
38.
Xiao
,
Y.
,
Wang
,
B.
, and
Zhou
,
S.
,
2015
, “
Pull-In Voltage Analysis of Electrostatically Actuated MEMS With Piezoelectric Layers: A Size-Dependent Model
,”
Mech. Res. Commun.
,
66
, pp.
7
14
. 10.1016/j.mechrescom.2015.03.005
39.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Microscale Beam Based on the Modified Couple Stress Theory
,”
Compos. Part B
,
50
, pp.
318
324
. 10.1016/j.compositesb.2013.02.021
40.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2014
, “
In-Plane and Out-of-Plane Motion Characteristics of Microbeams With Modal Interactions
,”
Compos. Part B
,
60
, pp.
423
439
. 10.1016/j.compositesb.2013.12.074
41.
Farokhi
,
H.
,
Ghayesh
,
M.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp.
11
23
. 10.1016/j.ijengsci.2013.03.001
42.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Thermo-Mechanical Dynamics of Perfect and Imperfect Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
91
, pp.
12
33
. 10.1016/j.ijengsci.2015.02.005
43.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
,
2016
, “
Size-Dependent Performance of Microgyroscopes
,”
Int. J. Eng. Sci.
,
100
, pp.
99
111
. 10.1016/j.ijengsci.2015.11.003
You do not currently have access to this content.