Mismatch effect plays a crucial role in weldments, and an independent mismatch constraint parameter M* is proposed to characterize the material mismatch constraint effect in this paper. A mismatched modified boundary layer (MBL) model for creeping solids is developed to simulate the stress field of creep cracks in mismatched weldments. It can be found that there still exists the similarity between creep crack tip stress fields under different mismatch factors. Numerical results show that M* obtains the minimum value on the under match condition and the maximum value on the over match condition. Comparisons between M* and other geometric constraint parameters (A2(t) and Q22) are carried out and the applicability of M* is verified. A modified assessment formula for creep crack growth rate ratio is proposed based on the parameter M*. It is found that M* is a reasonable and remarkable parameter to characterize the mismatch constraint effect of creeping cracks.

References

1.
Tan
,
J.
,
Tu
,
S.
,
Wang
,
G.
, and
Xuan
,
F.
,
2013
, “
Effect and Mechanism of Out-of-Plane Constraint on Creep Crack Growth Behavior of a Cr–Mo–V Steel
,”
Eng. Fract. Mech.
,
99
, pp.
324
334
.
2.
Liu
,
S.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2014
, “
Creep Constraint Analysis and Constraint Parameter Solutions for Axial Semi-Elliptical Surface Cracks in Pressurized Pipes
,”
Eng. Fract. Mech.
,
132
, pp.
1
15
.
3.
Tan
,
J. P.
,
Tu
,
S. T.
,
Wang
,
G. Z.
, and
Xuan
,
F. Z.
,
2015
, “
Characterization and Correlation of 3-D Creep Constraint Between Axially Cracked Pipelines and Test Specimens
,”
Eng. Fract. Mech.
,
136
, pp.
96
114
.
4.
Zhao
,
L.
,
Xu
,
L.
,
Han
,
Y.
, and
Jing
,
H.
,
2015
, “
Quantifying the Constraint Effect Induced by Specimen Geometry on Creep Crack Growth Behavior in P92 Steel
,”
Int. J. Mech. Sci.
,
94–95
, pp.
63
74
.
5.
Zhang
,
J. W.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2014
, “
Prediction of Creep Crack Growth Behavior in Cr–Mo–V Steel Specimens With Different Constraints for a Wide Range of C*
,”
Eng. Fract. Mech.
,
132
, pp.
70
84
.
6.
Zhao
,
L.
,
Jing
,
H.
,
Xiu
,
J.
,
Han
,
Y.
, and
Xu
,
L.
,
2014
, “
Experimental Investigation of Specimen Size Effect on Creep Crack Growth Behavior in P92 Steel Welded Joint
,”
Mater. Des.
,
57
, pp.
736
743
.
7.
Budden
,
P.
, and
Ainsworth
,
R.
,
1997
, “
The Effect of Constraint on Creep Fracture Assessments
,”
Int. J. Fract.
,
87
(
2
), pp.
139
149
.
8.
Shih
,
C. F.
,
O'Dowd
,
N.
, and
Kirk
,
M.
,
1993
, “
A Framework for Quantifying Crack Tip Constraint
,”
Constraint Effects in Fracture
(ASTM STP 1171), ASTM, Philadelphia, PA, pp.
2
20
.
9.
Tan
,
J. P.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2012
, “
Correlation of Creep Crack-Tip Constraint Between Axially Cracked Pipelines and Test Specimens
,”
Int. J. Pressure Vessels Piping
,
98
, pp.
16
25
.
10.
Wang
,
G.
,
Li
,
B.
,
Xuan
,
F.
, and
Tu
,
S.
,
2012
, “
Numerical Investigation on the Creep Crack-Tip Constraint Induced by Loading Configuration of Specimens
,”
Eng. Fract. Mech.
,
79
, pp.
353
362
.
11.
Hoff
,
N.
,
1954
, “
Approximate Analysis of Structures in the Presence of Moderately Large Creep Deformations
,”
Q. Appl. Math.
,
12
(
1
), p.
49
.
12.
Chao
,
Y.
,
Zhu
,
X.
, and
Zhang
,
L.
,
2001
, “
Higher-Order Asymptotic Crack-Tip Fields in a Power-Law Creeping Material
,”
Int. J. Solids Struct.
,
38
(
21
), pp.
3853
3875
.
13.
Yang
,
S.
,
Chao
,
Y.
, and
Sutton
,
M.
,
1993
, “
Higher Order Asymptotic Crack Tip Fields in a Power-Law Hardening Material
,”
Eng. Fract. Mech.
,
45
(
1
), pp.
1
20
.
14.
Li
,
Y.
, and
Wang
,
Z.
,
1986
, “High-Order Asymptotic Field of Tensile Plane-Strain Nonlinear Crack Problems,”
Sci. China Math.
,
29
(9), pp.
941
955
.
15.
Xia
,
L.
, and
Wang
,
T.
,
1992
, “
High-Order Asymptotic Analysis for the Crack in Nonlinear Material
,”
Acta Mech. Sin.
,
8
(
2
), pp.
156
164
.
16.
Nguyen
,
B.
,
Onck
,
P.
, and
Van Der Giessen
,
E.
,
2000
, “
On Higher-Order Crack-Tip Fields in Creeping Solids
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
372
382
.
17.
Wang
,
G.
,
Liu
,
X.
,
Xuan
,
F.-Z.
, and
Tu
,
S.-T.
,
2010
, “
Effect of Constraint Induced by Crack Depth on Creep Crack-Tip Stress Field in CT Specimens
,”
Int. J. Solids Struct.
,
47
(
1
), pp.
51
57
.
18.
Tan
,
J. P.
,
Wang
,
G. Z.
,
Tu
,
S. T.
, and
Xuan
,
F. Z.
,
2014
, “
Load-Independent Creep Constraint Parameter and Its Application
,”
Eng. Fract. Mech.
,
116
, pp.
41
57
.
19.
Dyson
,
B.
,
1979
, “
Constrained Cavity Growth, Its Use in Quantifying Recent Creep Fracture Results
,”
Can. Metall. Q.
,
18
(
1
), pp.
31
38
.
20.
Bettinson
,
A. D.
,
O'Dowd
,
N. P.
,
Nikbin
,
K. M.
, and
Webster
,
G. A.
,
2002
, “
Experimental Investigation of Constraint Effects on Creep Crack Growth
,”
ASME
Paper No. PVP2002-1117.
21.
Yamamoto
,
M.
,
Miura
,
N.
, and
Ogata
,
T.
,
2009
, “
Effect of Constraint on Creep Crack Propagation of Mod. 9Cr-1Mo Steel Weld Joint
,”
ASME
Paper No. PVP2009-77862.
22.
Vilhelmsen
,
T.
, and
Webster
,
G.
,
1997
, “
Creep Crack Growth and Constraints in Weldments
,” International Conference on Fracture (
ICF-9
), Sydney, Australia, Oct. 14, pp. 555–562.
23.
Zhou
,
H.
,
Biglari
,
F.
,
Davies
,
C. M.
,
Mehmanparast
,
A.
, and
Nikbin
,
K. M.
,
2014
, “
Evaluation of Fracture Mechanics Parameters for a Range of Weldment Geometries With Different Mismatch Ratios
,”
Eng. Fract. Mech.
,
124–125
, pp.
30
51
.
24.
Tu
,
S.-T.
, and
Yoon
,
K.-B.
,
1999
, “
The Influence of Material Mismatch on the Evaluation of Time-Dependent Fracture Mechanics Parameters
,”
Eng. Fract. Mech.
,
64
(
6
), pp.
765
780
.
25.
Koo
,
J.-M.
,
Huh
,
Y.
, and
Seok
,
C.-S.
,
2012
, “
Plastic η Factor Considering Strength Mismatch and Crack Location in Narrow Gap Weldments
,”
Nucl. Eng. Des.
,
247
, pp.
34
41
.
26.
Segle
,
P.
,
Andersson
,
P.
, and
Samuelson
,
L.
,
2000
, “
Numerical Investigation of Creep Crack Growth in Cross-Weld CT Specimens. Part I: Influence of Mismatch in Creep Deformation Properties and Notch Tip Location
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
6
), pp.
521
531
.
27.
Chilton
,
I.
,
Price
,
A.
, and
Wilshire
,
B.
,
1984
, “
Creep Deformation and Local Strain Distributions in Dissimilar Metal Welds Between AISI Type 316 and 2–25Cr–1 Mo Steels Made With 17Cr–8Ni–2Mo Weld Metal
,”
Met. Technol.
,
11
(
1
), pp.
383
391
.
28.
Lee
,
K. H.
,
Kim
,
Y. J.
,
Yoon
,
K. B.
,
Nikbin
,
K.
, and
Dean
,
D.
,
2010
, “
Quantification of Stress Redistribution Due to Mismatch in Creep Properties in Welded Branch Pipes
,”
Fatigue Fract. Eng. Mater. Struct.
,
33
(
4
), pp.
238
251
.
29.
Dogan
,
B.
, and
Petrovski
,
B.
,
2001
, “
Creep Crack Growth of High Temperature Weldments
,”
Int. J. Pressure Vessels Piping
,
78
(
11
), pp.
795
805
.
30.
Saxena
,
A.
,
2007
, “
Role of Nonlinear Fracture Mechanics in Assessing Fracture and Crack Growth in Welds
,”
Eng. Fract. Mech.
,
74
(
6
), pp.
821
838
.
31.
Tu
,
S.
,
2002
, “
Creep Behavior of Crack Near Bi-Material Interface Characterized by Integral Parameters
,”
Theor. Appl. Fract. Mech.
,
38
(
2
), pp.
203
209
.
32.
Xuan
,
F.-Z.
,
Tu
,
S.-T.
, and
Wang
,
Z.
,
2005
, “
A Modification of ASTM E 1457 C* Estimation Equation for Compact Tension Specimen With a Mismatched Cross-Weld
,”
Eng. Fract. Mech.
,
72
(
17
), pp.
2602
2614
.
33.
Dodds
,
R. H.
, Jr.
,
Anderson
,
T. L.
, and
Kirk
,
M. T.
,
1991
, “
A Framework to Correlate a/W Ratio Effects on Elastic–Plastic Fracture Toughness (J C)
,”
Int. J. Fract.
,
48
(
1
), pp.
1
22
.
34.
Thaulow
,
C.
,
Paauw
,
A.
,
Hauge
,
M.
,
Toyoda
,
M.
, and
Minami
,
F.
,
1994
, “
Fracture Property of HAZ-Notched Weld Joint With Mechanical Mis-Matching—Part II
,”
Mismatching of Welds
, ESIS 17, Mechanical Engineering Publications, London, pp.
417
432
.
35.
Thaulow
,
C.
,
Zhang
,
Z.
, and
Hauge
,
M.
,
1997
, “
Effects of Crack Size and Weld Metal Mismatch on the has Cleavage Toughness of Wide Plates
,”
Eng. Fract. Mech.
,
57
(
6
), pp.
653
664
.
36.
Zhang
,
Z.
,
Hauge
,
M.
, and
Thaulow
,
C.
,
1997
, “
The Effect of T Stress on the Near Tip Stress Field of an Elastic–Plastic Interface Crack
,” International Conference on Fracture (
ICF-9
), Sydney, Australia, Oct. 14, pp.
2643
2650
.
37.
Ranestad
,
O.
,
Zhang
,
Z.
, and
Thaulow
,
C.
,
1999
, “
Quantification of Geometry and Material Mismatch Constraint in Steel Weldments With Fusion Line Cracks
,”
Int. J. Fract.
,
99
(
4
), pp.
211
237
.
38.
Ren
,
X.
,
Zhang
,
Z.
, and
Nyhus
,
B.
,
2009
, “
Effect of Residual Stresses on the Crack-Tip Constraint in a Modified Boundary Layer Model
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2629
2641
.
39.
Østby
,
E.
,
Zhang
,
Z.
, and
Thaulow
,
C.
,
2001
, “
Constraint Effect on the Near Tip Stress Fields Due to Difference in Plastic Work Hardening for Bi-Material Interface Cracks in Small Scale Yielding
,”
Int. J. Fract.
,
111
(
1
), pp.
87
103
.
40.
Betegon
,
C.
, and
Hancock
,
J.
,
1991
, “
Two-Parameter Characterization of Elastic–Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
104
110
.
41.
Nakamura
,
T.
, and
Parks
,
D.
,
1990
, “
Three-Dimensional Crack Front Fields in a Thin Ductile Plate
,”
J. Mech. Phys. Solids
,
38
(
6
), pp.
787
812
.
42.
Matvienko
,
Y. G.
,
Shlyannikov
,
V.
, and
Boychenko
,
N.
,
2013
, “
In-Plane and Out-of-Plane Constraint Parameters Along a Three-Dimensional Crack-Front Stress Field Under Creep Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
1
), pp.
14
24
.
43.
Shlyannikov
,
V.
,
Boychenko
,
N.
, and
Tartygasheva
,
A.
,
2011
, “
In-Plane and Out-of-Plane Crack-Tip Constraint Effects Under Biaxial Nonlinear Deformation
,”
Eng. Fract. Mech.
,
78
(
8
), pp.
1771
1783
.
44.
Williams
,
M.
,
1957
, “On the Stress Distribution at the Base of a Stationary Crack,” ASME J. Appl. Mech.,
24
(1), pp.
109
114
.
45.
Larsson
,
S.-G.
, and
Carlsson
,
A. J.
,
1973
, “
Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic–Plastic Materials
,”
J. Mech. Phys. Solids
,
21
(
4
), pp.
263
277
.
46.
Sherry
,
A.
,
France
,
C.
, and
Goldthorpe
,
M.
,
1995
, “
Compendium of T-Stress Solutions for Two and Three-Dimensional Cracked Geometries
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(
1
), pp.
141
155
.
47.
Sharma
,
S. M.
,
Aravas
,
N.
, and
Zelman
,
M. G.
,
1995
, “Two-Parameter Characterization of Crack Tip Fields in Edge-Cracked Geometries: Plasticity and Creep Solutions,”
Fracture Mechanics: 25th Volume
(ASTM STP 1220), ASTM, Philadelphia, PA, pp.
309
327
.
48.
Landes
,
J.
, and
Begley
,
J.
,
1976
, “A Fracture Mechanics Approach to Creep Crack Growth,”
Mechanics of Crack Growth
(ASTM STP 590), ASTM, Philadelphia, PA, pp.
128
148
.
49.
Zhang
,
Z.
,
Hauge
,
M.
, and
Thaulow
,
C.
,
1996
, “
Two-Parameter Characterization of the Near-Tip Stress Fields for a Bi-Material Elastic–Plastic Interface Crack
,”
Int. J. Fract.
,
79
(
1
), pp.
65
83
.
50.
Liu
,
J.
,
Zhang
,
Z.
, and
Nyhus
,
B.
,
2008
, “
Residual Stress Induced Crack Tip Constraint
,”
Eng. Fract. Mech.
,
75
(
14
), pp.
4151
4166
.
51.
Riedel
,
H.
,
1990
, “
Creep Crack Growth Under Small-Scale Creep Conditions
,”
Non-Linear Fracture
,
Springer
, Dordrecht, pp.
173
188
.
52.
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
1983
, “Bounds for Fully Plastic Crack Problems for Infinite Bodies,”
Elastic-Plastic Fracture
(ASTM STP 803),
ASTM, Philadelphia, PA
, pp.
277
290
.
53.
Du
,
Z.-Z.
, and
Hancock
,
J.
,
1991
, “
The Effect of Non-Singular Stresses on Crack-Tip Constraint
,”
J. Mech. Phys. Solids
,
39
(
4
), pp.
555
567
.
54.
Sorem
,
W.
,
Dodds
,
R.
, Jr.
, and
Rolfe
,
S.
,
1991
, “
Effects of Crack Depth on Elastic–Plastic Fracture Toughness
,”
Int. J. Fract.
,
47
(
2
), pp.
105
126
.
55.
Budden
,
P.
, and
Curbishley
,
I.
,
2000
, “
Assessment of Creep Crack Growth in Dissimilar Metal Welds
,”
Nucl. Eng. Des.
,
197
(
1
), pp.
13
23
.
56.
Li
,
Y.-D.
,
Zhang
,
H.-C.
,
Tan
,
W.
, and
Lee
,
K. Y.
,
2008
, “
Mechanical Modeling and Fracture Analysis for a Non-Homogeneous Weldment With a Crack Perpendicular to the Interface
,”
Int. J. Solids Struct.
,
45
(
22–23
), pp.
5730
5743
.
57.
Liu
,
B.
,
Kimoto
,
H.
, and
Kitagawa
,
H.
,
1996
, “
Elastic–Plastic Analysis of a Crack Parallel to the Interface
,”
Eng. Fract. Mech.
,
53
(
4
), pp.
607
623
.
58.
Chao
,
Y.
, and
Zhang
,
L.
,
1997
, “
Tables of Plane Strain Crack Tip Fields: HRR and Higher Order Terms
,” Department of Mechanical Engineering, University of South Carolina, Columbia, SC, Technical Report No. 97–1, pp. 1–100.
59.
Cocks
,
A.
, and
Ashby
,
M.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8–9
), pp.
395
402
.
60.
Yatomi
,
M.
,
O'Dowd
,
N. P.
,
Nikbin
,
K. M.
, and
Webster
,
G. A.
,
2006
, “
Theoretical and Numerical Modelling of Creep Crack Growth in a Carbon–Manganese Steel
,”
Eng. Fract. Mech.
,
73
(
9
), pp.
1158
1175
.
61.
Nikbin
,
K. M.
,
Smith
,
D. J.
, and
Webster
,
G. A.
,
1986
, “
An Engineering Approach to the Prediction of Creep Crack Growth
,”
ASME J. Eng. Mater. Technol.
,
108
(
2
), pp.
186
191
.
62.
Yatomi
,
M.
, and
Tabuchi
,
M.
,
2010
, “
Issues Relating to Numerical Modelling of Creep Crack Growth
,”
Eng. Fract. Mech.
,
77
(
15
), pp.
3043
3052
.
63.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields*
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
You do not currently have access to this content.