A least action principle for damping motion has been previously proposed with a Hamiltonian and a Lagrangian containing the energy dissipated by friction. Due to the space-time nonlocality of the Lagrangian, mathematical uncertainties persist about the appropriate variational calculus and the nature (maxima, minima, and inflection) of the stationary action. The aim of this work is to make a numerical simulation of the damped motion and to compare the actions of different paths in order to obtain evidence of the existence and the nature of stationary action. The model is a small particle subject to conservative and friction forces. Two conservative forces and three friction forces are considered. The comparison of the actions of the perturbed paths with that of the Newtonian path reveals the existence of extrema of action which are minima for zero or very weak friction and shift to maxima when the motion is overdamped. In the intermediate case, the action of the Newtonian path is neither least nor most, meaning that the extreme feature of the Newtonian path is lost. In this situation, however, no reliable evidence of stationary action can be found from the simulation result.

References

1.
de Maupertuis
,
P. L. M.
,
1744
, “
Accord de différentes lois de la nature qui avaient jusqu'ici paru incompatibles
,”
Mém. As. Sc. Paris
,
1744
, p.
417
.
2.
de Maupertuis
,
P. L. M.
,
1746
, “
Les lois de mouvement et du repos, déduites d'un principe de métaphysique
,”
Mém. Ac. Berlin
,
1746
, p.
267
.
3.
Arnold
,
V. I.
,
1989
,
Mathematical Methods of Classical Mechanics
, 2nd ed.,
Springer-Verlag
,
New York
.
4.
Lanczos
,
C.
,
1986
,
The Variational Principles of Mechanics
,
Dover
,
New York
.
5.
Goldstein
,
H.
,
1981
,
Classical Mechanics
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
6.
Sieniutycz
,
S.
and
Farkas
,
H.
,
2005
,
Variational and Extremum Principles in Macroscopic Systems
,
Elsevier
,
New York
.
7.
Vujanovic
,
B. D.
, and
Jones
,
S. E.
,
1989
,
Variational Methods in Nonconservative Phenomena
,
Academic
,
New York
.
8.
Goldstine
,
H. H.
,
1980
,
A History of the Calculus of Variations From the 17th Through the 19th Century
,
Springer-Verlag
,
New York
.
9.
Gray
,
C. G.
,
2009
, “
Principle of Least Action
,”
Scholarpedia J.
,
4
, p.
8291
.10.4249/scholarpedia.8291
10.
Gray
,
C. G.
,
Karl
,
G.
, and
Novikov
,
V. A.
, “
Progress in Classical and Quantum Variational Principles
,”
Rep. Prog. Phys.
,
67
, p.
159
.10.1088/0034-4885/67/2/R02
11.
Herrera
,
L.
,
Nunez
,
L.
, A.
Patino
,
A.
, and
H.
Rago
,
H.
,
1986
, “
A Variational Principle and the Classical and Quantum Mechanics of the Damped Harmonic Oscillator
,”
Am. J. Phys.
,
54
, p.
273
.10.1119/1.14644
12.
Bateman
,
H.
,
1931
, “
On Dissipative Systems and Related Variational Principles
,”
Phys. Rev.
,
38
, p.
815
.10.1103/PhysRev.38.815
13.
Sanjuan
,
M. A. F.
,
1995
, “
Comments on the Hamiltonian Formulation for Linear and Nonlinear Oscillators Including Dissipation
,”
J. Sound Vib.
,
185
, p.
734
.10.1006/jsvi.1995.0413
14.
Riewe
,
F.
,
1997
, “
Mechanics With Fractional Derivatives
,”
Phys. Rev. E
,
55
, p.
3581
.10.1103/PhysRevE.55.3581
15.
Duffin
,
R. J.
,
1962
, “
Pseudo-Hamiltonian Mechanics
,”
Arch. Ration. Mech. Anal.
,
9
, p.
309
.10.1007/BF00253353
16.
Schuch
,
D.
,
1990
, “
A New Lagrange-Hamilton Formalism for Dissipative Systems
,”
Int. J. Quantum Chem., Quantum Chem. Symp.
,
24
, pp.
767
780
.10.1002/qua.560382475
17.
Wang
,
Q. A.
, and
Wang
,
R.
, “
Is it Possible to Formulate Least Action Principle for Dissipative Systems?
,” eprint: arXiv:1201.6309.
18.
Weisstein
,
E. W.
, “Second Fundamental Theorem of Calculus,” MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/SecondFundamentalTheoremofCalculus.html
19.
Gray
,
C. G.
, and E. F.
Taylor
,
E. F.
,
2007
, “
When Action is Not Least
,”
Am. J. Phys.
,
75
, pp.
434
458
.10.1119/1.2710480
You do not currently have access to this content.