Thin-walled tubes subjected to axial crushing have been extensively employed as energy absorption devices in transport vehicles. Conventionally, they have a square or rectangular section, either straight or tapered. Dents are sometimes added to the surface in order to reduce the initial buckling force. This paper presents a novel thin-walled energy absorption device known as the origami crash box that is made from a thin-walled tube of square cross section whose surface is prefolded according to a developable origami pattern. The prefolded surface serves both as a type of geometric imperfection to lower the initial buckling force and as a mode inducer to trigger a collapse mode that is more efficient in terms of energy absorption. It has been found out from quasi-static numerical simulation that a new collapse mode referred to as the completed diamond mode, which features doubled traveling plastic hinge lines compared with those in conventional square tubes, can be triggered, leading to higher energy absorption and lower peak force than those of conventional ones of identical weight. A parametric study indicates that for a wide range of geometric parameters the origami crash box exhibits predictable and stable collapse behavior, with an energy absorption increase of 92.1% being achieved in the optimum case. The origami crash box can be stamped out of a thin sheet of material like conventional energy absorption devices without incurring in-plane stretching due to the developable surface of the origami pattern. The manufacturing cost is comparable to that of existing thin-walled crash boxes, but it absorbs a great deal more energy during a collision.

References

1.
Tyrell
,
D.
,
Jacobsen
,
K.
,
Martinez
,
E.
, and
Perlman
,
A. B.
,
2006
, “
Train-to-Train Impact Test of Crash Energy Management Passenger Rail Equipment: Structural Results
,” ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, November 5–10,
ASME
Paper No. IMECE2006-13597.10.1115/IMECE2006-13597
2.
Airoldi
,
A.
, and
Janszen
,
G.
,
2005
, “
A Design Solution for a Crashworthy Landing Gear With a New Triggering Mechanism for the Plastic Collapse of Metallic Tubes
,”
Aerosp. Sci. Technol.
,
9
(
5
), pp.
445
455
.10.1016/j.ast.2005.04.001
3.
Lu
,
G.
, and
Yu
,
T.X.
,
2003
,
Energy Absorption of Structures and Materials
,
CRC-Woodhead
,
Cambridge
, UK, pp.
144
.
4.
Alexander
,
J. M.
,
1960
, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading
,”
Q.J. Mech. Appl. Math.
,
13
(
1
), pp.
10
15
.10.1093/qjmam/13.1.10
5.
Wierzbicki
,
T.
,
Bhat
,
S.U.
,
Abramowicz
,
W.
, and
Brodkin
,
D.
,
1992
, “
Alexander Revisited—A Two Folding Elements Model of Progressive Crushing of Tubes
,”
Int. J. Solids Struct.
,
29
(
24
), pp.
3269
3288
.10.1016/0020-7683(92)90040-Z
6.
Singace
,
A.A.
,
Elsobky
,
H.
, and
Reddy
,
T.Y.
,
1995
, “
On the Eccentricity Factor in the Progressive Crushing of Tubes
,”
Int. J. Solids Struct.
,
32
(
24
), pp.
3589
3602
.10.1016/0020-7683(95)00020-B
7.
Pugsley
,
A.
,
1960
, “
The Large-Scale Crumpling of Thin Cylindrical Columns
,”
Q. J. Mech. Appl. Math.
,
13
(
1
), pp.
1
9
.10.1093/qjmam/13.1.1
8.
Pugsley
,
A.G.
,
1979
, “
On the Crumpling of Thin Tubular Struts
,”
Q. J. Mech. Appl. Math.
,
32
(
1
), pp.
1
7
.10.1093/qjmam/32.1.1
9.
Singace
,
A.A.
,
1999
, “
Axial Crushing Analysis of Tubes Deforming in the Multi-Lobe Mode
,”
Int. J. Mech. Sci.
,
41
(
7
), pp.
865
890
.10.1016/S0020-7403(98)00052-6
10.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4
), pp.
727
734
.10.1115/1.3167137
11.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.10.1016/0734-743X(84)90005-8
12.
Abramowicz
,
W.
, and
Jones
,
N.
,
1986
, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
,
4
(
4
), pp.
243
270
.10.1016/0734-743X(86)90017-5
13.
Santosa
,
S.
, and
Wierzbicki
,
T.
,
1998
, “
Crash Behavior of Box Columns Filled With Aluminum Honeycomb or Foam
,”
Comput. Struct.
,
68
(
4
), pp.
343
367
.10.1016/S0045-7949(98)00067-4
14.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984a
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.10.1016/0734-743X(84)90005-8
15.
Singace
,
A.A.
, and
El-Sobky
,
H.
,
1997
, “
Behaviour of Axially Crushed Corrugated Tubes
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
249
268
.10.1016/S0020-7403(96)00022-7
16.
Hosseinipour
,
S.J.
, and
Daneshi
,
G.H.
,
2003
, “
Energy Absorbtion and Mean Crushing Load of Thin-Walled Grooved Tubes Under Axial Compression
,”
Thin-Walled Struct.
,
41
(
1
), pp.
31
46
.10.1016/S0263-8231(02)00099-X
17.
Lee
,
S.
,
Hahn
,
C.
,
Rhee
,
M.
, and
Oh
,
J.-E.
,
1999
, “
Effect of Triggering on the Energy Absorption Capacity of Axially Compressed Aluminum Tubes
,”
Mater. Des.
,
20
(
1
), pp.
31
40
.10.1016/S0261-3069(98)00043-0
18.
Adachi
,
T.
,
Tomiyama
,
A.
,
Araki
,
W.
, and
Yamaji
,
A.
,
2008
, “
Energy Absorption of a Thin-Walled Cylinder With Ribs Subjected to Axial Impact
,”
Int. J. Impact Eng.
,
35
(
2
), pp.
65
79
.10.1016/j.ijimpeng.2006.11.005
19.
Lee
,
K.S.
,
Kim
,
S.K.
, and
Yang
,
I.Y.
,
2008
, “
The Energy Absorption Control Characteristics of Al Thin-Walled Tube Under Quasi-Static Axial Compression
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
445
449
.10.1016/j.jmatprotec.2007.11.155
20.
Zhang
,
X.
,
Cheng
,
G.
,
You
,
Z.
, and
Zhang
,
H.
,
2007
, “
Energy Absorption of Axially Compressed Thin-Walled Square Tubes With Patterns
,”
Thin-Walled Struct.
,
45
(
9
), pp.
737
746
.10.1016/j.tws.2007.06.004
21.
Ma,
J.
,
Le
,
Y.
, and
You
,
Z.
,
2010
, “
Axial Crushing Tests of Thin-Walled Steel Square Tubes With Pyramid Patterns
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Orlando, FL, April 12–15,
AIAA
Paper No. 2010-2615.10.2514/6.2010-2615
22.
Guest
,
S.D.
, and
Pellegrino
,
S.
,
1994a
, “
The Folding of Triangulated Cylinders—Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
, pp.
773
777
.10.1115/1.2901553
23.
Guest
,
S.D.
, and
Pellegrino
,
S.
,
1994b
, “
The Folding of Triangulated Cylinders—Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
, pp.
777
783
.10.1115/1.2901554
24.
Guest
,
S.D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders—Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
, pp.
77
83
.10.1115/1.2787212
25.
You
,
Z.
, and
Cole
,
N.
,
2006
, “
Self-Locking Bi-Stable Deployable Booms
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Newport, RI, May 1–4,
AIAA
Paper No. 2006-1685.10.2514/6.2006-1685
26.
Zhang
,
X.W.
,
Su
,
H.
, and
Yu
,
T.X.
,
2009
, “
Energy Absorption of an Axially Crushed Square Tube With a Buckling Initiator
,”
Int. J. Impact Eng.
,
36
(
3
), pp.
402
417
.10.1016/j.ijimpeng.2008.02.002
27.
ABAQUS
,
2007
, ABAQUS Analysis User's Manual, Documentation Version 6.7, Dassault Systems Simulia Corp., Providence, RI.
28.
Ma
,
J.
,
2011
, “
Thin-Walled Tubes With Pre-Folded Origami Patterns as Energy Absorption Devices
,” Ph.D. thesis, University of Oxford, Oxford, UK.
29.
Wu
,
W.
,
2010
, “
Rigid Origami: Modelling, Application in Pre-Folded Cylinders and Manufacturing
,” Ph.D. thesis, University of Oxford, Oxford, UK.
30.
Abramowicz
,
W.
, and
Jones
,
N.
,
1997
, “
Transition From Initial Global Bending to Progressive Buckling of Tubes Loaded Statically and Dynamically
,”
Int. J. Impact Eng.
,
19
(
5–6
), pp.
415
437
.10.1016/S0734-743X(96)00052-8
31.
Langseth
,
M.
,
Hopperstad
,
O.S.
, and
Berstad
,
T.
,
1999
, “
Crashworthiness of Aluminium Extrusions: Validation of Numerical Simulation, Effect of Mass Ratio and Impact Velocity
,”
Int. J. Impact Eng.
,
22
(
9–10
), pp.
829
854
.10.1016/S0734-743X(98)00070-0
32.
Meguid
,
S.A.
,
Attia
,
M.S.
,
Stranart
,
J.C.
, and
Wang
,
W.
,
2007
, “
Solution Stability in the Dynamic Collapse of Square Aluminium Columns
,”
Int. J. Impact Eng.
,
34
(
2
), pp.
348
359
.10.1016/j.ijimpeng.2005.09.001
33.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. J., Ser. C
,
45
(
1
), pp.
364
370
.10.1299/jsmec.45.364
34.
Nojima
,
T.
,
1999
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Using Origami (in Japanese)
,”
JSME
,
66
(
643
), pp.
354
359
.
You do not currently have access to this content.