This work introduces the “order of magnitude scaling” (OMS) technique, which permits for the first time a simple computer implementation of the scaling (or “ordering”) procedure extensively used in engineering. The methodology presented aims at overcoming the limitations of the current scaling approach, in which dominant terms are manually selected and tested for consistency. The manual approach cannot explore all combinations of potential dominant terms in problems represented by many coupled differential equations, thus requiring much judgment and experience and occasionally being unreliable. The research presented here introduces a linear algebra approach that enables unassisted exhaustive searches for scaling laws and checks for their self-consistency. The approach introduced is valid even if the governing equations are nonlinear, and is applicable to continuum mechanics problems in areas such as transport phenomena, dynamics, and solid mechanics. The outcome of OMS is a set of power laws that estimates the characteristic values of the unknowns in a problem (e.g., maximum velocity or maximum temperature variation). The significance of this contribution is that it extends the range of applicability of scaling techniques to large systems of coupled equations and brings objectivity to the selection of small terms, leading to simplifications. The methodology proposed is demonstrated using a linear oscillator and thermocapillary flows in welding.

References

1.
Einstein
,
A.
,
1934
, “
On the Method of Theoretical Physics
,”
Philos. Sci.
,
1
(
2
),
pp.
163
169
.10.1086/286316
2.
Mendez
,
P. F.
,
2010
, “
Characteristic Values in the Scaling of Differential Equations in Engineering
,”
J. Appl. Mech.
,
77
(
6
), p.
061017
.10.1115/1.4001357
3.
Mendez
,
P. F.
, and
Eagar
,
T. W.
,
2001
, “
Estimation of the Characteristic Properties of the Weld Pool During High Productivity Arc Welding
,”
Mathematical Modelling of Weld Phenomena
,
H.
Cerjak
and
H. K. D. H.
Bhadeshia
, eds.,
Institute of Materials
,
London, UK
,
pp.
67
94
,
Vol.
5
.
4.
Mendez
,
P. F.
, and
Eagar
,
T. W.
,
2001
, “
The Matrix of Coefficients in Order of Magnitude Scaling
,”
Fourth International Workshop on Similarity Methods, Nov. 5–6, University of Stuttgart
,
Stuttgart, Germany
,
pp.
51
67
.
5.
Barr
,
D. I. H.
,
1987
, “
Consolidation of Basics of Dimensional Analysis
,”
J. Eng. Mech.
,
110
(
9
),
pp.
1357
1376
.10.1061/(ASCE)0733-9399(1984)110:9(1357)
6.
Szirtes
,
T.
, and
Rózsa
,
P.
,
1997
,
Applied Dimensional Analysis and Modeling
,
McGraw Hill
,
New York
.
7.
Kruskal
,
M. D.
,
1963
, “
Asymptotology
,”
Mathematical Models in Physical Sciences
,
S.
Drobot
, ed.,
Prentice-Hall
,
Notre Dame, IN
,
pp.
17
48
.
8.
Segel
,
L. A.
,
1972
, “
Simplification and Scaling
,”
SIAM Rev.
,
14
(
4
),
pp.
547
571
.10.1137/1014099
9.
Dyke
,
M. V.
,
1975
,
Perturbation Methods in Fluid Mechanics
, annotated ed.,
The Parabolic Press
,
Stanford, CA
.
10.
Bender
,
C. M.
, and
Orszag
,
S. A.
,
1978
,
Advanced Mathematical Methods for Scientists and Engineers
(
International Series in Pure and Applied Mathematics
), 1st ed.,
McGraw-Hill
,
New York
.
11.
Denn
,
M. M.
,
1980
,
Process Fluid Mechanics
(
Prentice-Hall International Series in the Physical and Chemical Engineering Series
), 1st ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
Kline
,
S. J.
,
1986
,
Similitude and Approximation Theory
,
Springer-Verlag
,
New York
.
13.
Yip
,
K. M. K.
,
1996
, “
Model Simplification by Asymptotic Order of Magnitude Reasoning
,”
Artif. Intell.
,
80
(
2
),
pp.
309
348
.10.1016/0004-3702(94)00068-9
14.
White
,
R. B.
,
2005
,
Asymptotic Analysis of Differential Equations
,
Imperial College Press
,
London
.
15.
Chen
,
M. M.
,
1990
, “
Scales, Similitude, and Asymptotic Considerations in Convective Heat Transfer
,”
Annual Review of Heat Transfer
, 1st ed., Vol.
3
,
C. L.
Tien
, ed.,
Hemisphere
,
New York
,
pp.
233
291
.
16.
Rivas
,
D.
, and
Ostrach
,
S.
,
1992
, “
Scaling of Low-Prandtl-Number Thermocapillary Flows
,”
Int. J. Heat Mass Transfer
,
35
(
6
),
pp.
1469
1479
.10.1016/0017-9310(92)90037-S
17.
Dantzig
,
J. A.
, and
Tucker
,
C. L.
,
2001
,
Modeling in Materials Processing
,
Cambridge University Press
,
Cambridge, England
.
18.
Heiple
,
C. R.
, and
Roper
,
J. R.
,
1982
, “
Mechanism for Minor Element Effect on GTA Fusion Zone Geometry
,”
Weld. J. (London)
,
61
(
4
),
pp.
97s
102s
.
19.
Sen
,
A. K.
, and
Davis
,
S. H.
,
1982
, “
Steady Thermocapillary Flows in Two-Dimensional Slots
,”
J. Fluid Mech.
,
121
,
pp.
163
186
.10.1017/S0022112082001840
20.
Strani
,
M.
,
Piva
,
R.
, and
Graziani
,
G.
,
1983
, “
Thermocapillary Convection in a Rectangular Cavity: Asymptotic Theory and Numerical Simulation
,”
J. Fluid Mech.
,
130
,
pp.
347
376
.10.1017/S0022112083001123
21.
Oreper
,
G. M.
, and
Szekely
,
J.
,
1984
, “
Heat and Fluid Flow Phenomena in Weld Pools
,”
J. Fluid Mech.
,
147
,
pp.
53
79
.10.1017/S0022112084001981
22.
Debroy
,
T.
, and
David
,
S. A.
,
1995
, “
Physical Processes in Fusion-Welding
,”
Rev. Mod. Phys.
,
67
(
1
),
pp.
85
112
.10.1103/RevModPhys.67.85
23.
Mendez
,
P. F.
, and
Eagar
,
T. W.
,
2003
, “
Penetration and Defect Formation in High Current Arc Welding
,”
Weld. J. (London)
,
82
(
10
),
pp.
296S
306S
.
24.
Mendez
,
P. F.
,
1999
, “
Order of Magnitude Scaling of Complex Engineering Problems and Its Application to High Productivity Arc Welding
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.
25.
Sahoo
,
P.
,
DebRoy
,
T.
, and
McNallan
,
M. J.
,
1988
, “
Surface Tension of Binary Metal Surface Active Solute Systems Under Conditions Relevant to Welding Metallurgy
,”
Metall. Trans. B
,
19B
,
pp.
483
491
.10.1007/BF02657748
You do not currently have access to this content.