In many industrial applications, complex mechanical systems can often be described by multibody systems (MBS) that interact with electrical, flowing, elastic structures, and other subsystems. Efficient, precise dynamic analysis for such coupled mechanical systems has become a research focus in the field of MBS dynamics. In this paper, a coupled self-propelled artillery system (SPAS) is examined as an example, and the discrete time transfer matrix method of MBS and multirate time integration algorithm are used to study the dynamics and cosimulation of coupled mechanical systems. The global error and computational stability of the proposed method are discussed. Finally, the dynamic simulation of a SPAS is given to validate the method. This method does not need the global dynamic equations and has a low-order system matrix, and, therefore, exhibits high computational efficiency. The proposed method has advantages for dynamic design of complex mechanical systems and can be extended to other coupled systems in a straightforward manner.

References

1.
Arnold
,
M.
,
2007
, “
Multi-Rate Time Integration for Large Scale Multibody System Models
,”
International Union of Theoretical and Applied Mechanics Symposium on Multiscale Problems in Multibody System Contacts
,
Springer, Dordrecht
, The Netherlands, pp.
1
10
.
2.
Arnold
,
M.
,
2009
, “
Numerical Methods for Simulation in Applied Dynamics
,”
Simulation Techniques for Applied Dynamics
(International Centre for Mechanical Sciences Courses and Lectures), Springer, New York
, Vol.
507
, pp.
191
246
.
3.
Kübler
,
R.
, and
Schiehlen
W.
,
2000
, “
Modular Simulation in Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
9
(
4
), pp.
107
127
.10.1023/A:1009810318420
4.
Wasfy
,
T. M.
, and
Noor
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody System
,”
ASME Appl. Mech. Rev.
,
56
(
6
), pp.
553
613
.10.1115/1.1590354
5.
Wehage
,
R. A.
,
Shabana
,
A. A.
, and
Hwang
Y. L.
,
1992
, “
Projection Methods in Flexible Multibody Dynamics. Part II: Dynamics and Recursive Projection Methods and Recursive Projection Methods
,”
Int. J. Numer. Methods Eng.
,
35
(
10
), pp.
1941
1966
.10.1002/nme.1620351003
6.
Critchley
,
J. H.
, and
Anderson
K. S.
,
2004
, “
A Parallel Logarithmic Order Algorithm for General Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
12
, pp.
75
93
.10.1023/B:MUBO.0000042893.00088.c9
7.
Belytschko
,
T.
,
Yen
,
H. J.
, and
Mullen
R.
,
1979
, “
Mixed Methods for Time Integration
,”
Comput. Methods Appl. Mech. Eng.
,
17/18
, pp.
259
275
.10.1016/0045-7825(79)90022-7
8.
Neal
,
M. O.
, and
Belytschko
,
T.
,
1989
, “
Explicit-Explicit Sub-Cycling With Non-Integer Time Step Ratios for Structural Dynamic Systems
,”
Comput. Struct.
,
31
(
6
), pp.
871
880
.10.1016/0045-7949(89)90272-1
9.
Daniel
,
W. J. T.
,
1998
, “
A Study of the Stability of Sub-Cycling Algorithms in Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
156
, pp.
1
13
.10.1016/S0045-7825(97)00140-0
10.
Prakash
,
A.
, and
Hjelmstad
,
K. D.
,
2004
, “
A FETI Based Multi-Step Coupling Method for Newmark Schemes in Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
61
: pp.
2183
2204
.10.1002/nme.1136
11.
Cavin
,
P.
,
Gravouil
,
A.
,
Lubrecht
,
A. A.
, and
Combescure
,
A.
,
2005
, “
Automatic Energy Conserving Space-Time Refinement for Linear Dynamic Structural Problems
,”
Int. J. Numer. Methods Eng.
,
64
: pp.
304
321
.10.1002/nme.1366
12.
Zheng
,
Y.
, and
Chu
,
Q.
,
2004
, “
Multi-Time-Step Finite Difference Time Domain Method
,”
Acta Electric Sinica
,
32
(
9
), pp.
1504
1506
.
13.
Miao
,
J. C.
,
Zhu
,
P.
,
Shi
,
G. L.
, and
Chen
,
G. L.
,
2008
, “
Study on Sub-Cycling Algorithm for Flexible Multi-Body System-Integral Theory and Implementation Flow Chart
,”
Comput. Mech.
,
41
, pp.
257
268
.10.1007/s00466-007-0183-9
14.
Rui
,
X. T.
,
He
,
B.
,
Lu
,
Y. Q.
,
Lu
,
W. G.
, and
Wang
,
G. P.
,
2005
, “
Discrete Time Transfer Matrix Method for Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
14
(
3-4
), pp.
317
344
.10.1007/s11044-005-5006-1
15.
Rong
,
B.
,
Rui
,
X. T.
, and
Wang
,
G. P.
,
2010
, “
New Method for Dynamics Modelling and Analysis on Flexible Plate Undergoing Large Overall Motion
,”
Proc. Inst. Mech. Eng. Part K-J. Multibody. Dyn.
,
224
(
K1
), pp.
33
44
.
16.
Rong
,
B.
,
Rui
,
X. T.
,
Wang
,
G. P.
, and
Yang
,
F. F.
,
2010
, “
New Efficient Method for Dynamics Modeling and Simulation of Flexible Multibody Systems Moving in Plane
,”
Multibody Syst. Dyn.
,
24
(
2
), pp.
181
200
.10.1007/s11044-010-9196-9
17.
Pestel
,
E. C.
, and
Leckie
,
F. A.
,
1963
,
Matrix Method in Elastomechanics
,
McGraw-Hill
,
New York
, pp.
51
369
, Chaps. 3-11.
18.
Kane
,
T. R.
,
Likine
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill Book Company
,
New York
, Chap. 1, pp.
21
102
.
19.
He
,
B.
,
Rui
,
X. T.
, and
Wang
,
G. P.
,
2007
, “
Riccati Discrete Time Transfer Matrix Method of Multibody System for Elastic Beam Undergoing Large Overall Motion
,”
Multibody Syst. Dyn.
,
18
(
4
), pp.
579
598
.10.1007/s11044-007-9063-5
20.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
, Chap. 6, pp.
267
307
.
21.
Rui
,
X. T.
, and
Yang
,
Q. R.
,
1992
,
The Theory of Projectile Launch Process
,
Southeast University Press
,
Nanjing, China
.
22.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations
,
Springer
,
New York
.
You do not currently have access to this content.