This article describes a mathematical model and two solution methodologies for efficiently predicting the equilibrium paths of an arbitrarily shaped, precurved, clamped beam. Such structures are common among multistable microelectromechanical systems (MEMS). First, a novel polynomial-based solution approach enables simultaneous solution of all equilibrium configurations associated with an arbitrary mechanical loading pattern. Second, the normal flow algorithm is used to negotiate the particularly complex nonlinear equilibrium paths associated with electrostatic loading and is shown to perform exceptionally well. Overall, the techniques presented herein provide designers with general and efficient computational frameworks for studying the effects of loading, shape, and imperfections on beam behavior. Sample problems motivated from switch and actuator applications in the literature demonstrate the methodologies’ utility in predicting the nonlinear equilibrium paths for structures of practical importance.

References

1.
Zhao
,
J.
,
Jia
,
J.
,
Wang
,
H.
, and
Li
,
W.
, 2007, “
A Novel Threshold Accelerometer With Postbuckling Structures for Airbag Restraint Systems
,”
IEEE Sensors Journal
,
7
(
8
), pp.
1102
1109
.
2.
Han
,
J. S.
,
Ko
,
J. S.
,
Kim
,
Y. T.
, and
Kwak
,
B. M.
, 2002, “
Parametric Study and Optimization of a Micro-optical Switch With a Laterally Driven Electromagnetic Microactuator
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
939
947
.
3.
Han
,
J. S.
,
Ko
,
J. S.
, and
Korvink
,
J. G.
, 2004, “
Structural Optimization of a Large-Displacement Electromagnetic Lorentz Force Microactuator for Optical Switching Applications
,”
J. Micromech. Microeng.
,
14
(
11
), pp.
1585
1596
.
4.
Luharuka
,
R.
, and
Hesketh
,
P. J.
, 2007, “
Design of Fully Compliant, In-Plane Rotary, Bistable Micromechanisms for MEMS Applications
,”
Sensor Actuat. A-Phys.
,
134
(
1
), pp.
231
238
.
5.
Michael
,
A.
,
Kwok
,
C. Y.
,
Yu
,
K.
, and
Mackenzie
,
M. R.
, 2008, “
A Novel Bistable Two-Way Actuated Out-of-Plane Electrothermal Microbridge
,”
J. Microelectromech. S.
,
17
(
1
), pp.
58
69
.
6.
Krylov
,
S.
,
Ilic
,
B. R.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
, 2008, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
,
18
(
5
),
p.
055026
.
7.
Park
,
S.
, and
Hah
,
D.
, 2008, “
Pre-shaped Buckled-Beam Actuators: Theory and Experiments
,”
Sensor Actuat. A-Phys.
,
148
(
1
), pp.
186
192
.
8.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
, 2008, “
In-Plane Bistable Nanowire for Memory Devices
,”
Symposium on Design
, Test, Integration, & Packaging of MEMS/MOEMS.
9.
Wagner
,
B.
,
Quenzer
,
H. J.
,
Hoerschelmann
,
S.
,
Lisec
,
T.
, and
Juerss
,
M.
, 1996, “
Bistable Microvalve with Pneumatically Coupled Membranes
,”
Proceedings of the 9th Annual International Workshop on MEMS
, pp.
384
388
.
10.
Receveur
,
R. A. M.
,
Marxer
,
C.
,
Woering
,
R.
,
Larik
,
V.
, and
de Rooij
,
N. F.
, 2005, “
Laterally Moving Bistable MEMS DC Switch for Biomedical Applications
,”
J. Microelectromech. S.
,
14
(
5
), pp.
1089
1098
.
11.
Jin
,
Q.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. S.
,
13
(
2
), pp.
137
146
.
12.
Freudenreich
,
M.
,
Mescheder
,
U.
, and
Somogyi
,
G.
, 2004, “
Simulation and Realization of a Novel Micromechanical Bi-stable Switch
,”
Sensor Actuat. A-Phys.
,
114
(
2–3
), pp.
451
459
.
13.
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2005, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. S.
,
14
(
6
), pp.
1223
1235
.
14.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2005, “
A Three Degree-of-Freedom Model for Self-Retracting Fully Compliant Bistable Micromechanisms
,”
ASME J. Mech. Design
,
127
(
4
), pp.
739
744
.
15.
Yang
,
Y. J.
,
Liao
,
B. T.
, and
Kuo
,
W. C.
, 2007, “
A Novel 2×2 MEMS Optical Switch Using the Split Cross-bar Design
,”
J. Micromech. Microeng.
,
17
(
5
), pp.
875
882
.
16.
Wang
,
D.
,
Pham
,
H.
, and
Hsieh
,
Y.
, 2009, “
Dynamical Switching of an Electromagnetically Driven Compliant Bbistable Mechanism
,”
Sensor Actuat. A-Phys.
,
149
(
1
), pp.
143
151
.
17.
Zhang
,
Y.
,
Wang
,
Y.
,
Li
,
Z.
,
Huang
,
Y.
, and
Li
,
D.
, 2007, “
Snap-Through and Pull-In Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading
,”
J. Microelectromech. S.
,
16
(
3
), pp.
684
693
.
18.
Hsu
,
C. S.
, 1967, “
The Effects of Various Parameters on the Dynamic Stability of a Shallow Arch
,”
ASME Journal of Applied Mechanics
,
34
(
2
), p.
349356
.
19.
Hsu
,
C. S.
, 1968, “
Equilibrium Configurations of a Shallow Arch of Arbitrary Shape and Their Dynamic Stability Character
,”
Int. J. Nonlinear Mech.
,
3
, pp.
113
136
.
20.
Simitses
,
G.
, 1976,
An Introduction to the Elastic Stability of Structures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Vangbo
,
M.
, and
Baecklund
,
Y.
, 1998, “
A Lateral Symmetrically Bistable Buckled Beam
,”
J. Micromech. Microeng.
,
8
, pp.
29
32
.
22.
Baker
,
M. S.
, and
Howell
,
L. L.
, 2002, “
On-Chip Actuation of an In-Plane Compliant Bistable Micromechanism
,”
J. Microelectromech. S.
,
11
(
5
), pp.
566
573
.
23.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2003, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. S.
,
12
(
3
), pp.
273
280
.
24.
Ragon
,
S. A.
,
Gürdal
,
Z.
, and
Watson
,
L. T.
, 2002, “
A Comparison of Three Algorithms for Tracing Nonlinear Equilibrium Paths of Structural Systems
,”
Int. J. Solids Struct.
,
39
(
3
), pp.
689
698
.
25.
Crisfield
,
M. A.
, 1993,
Non-Linear Finite Element Analysis of Solids and Structures
, Vol.
1
,
Wiley
,
New York
.
26.
Crisfield
,
M. A.
, 1997,
Non-Linear Finite Element Analysis of Solids and Structures
, Vol.
2
,
Wiley
,
New York
.
27.
Li
,
J.
,
Brenner
,
M.
,
Christen
,
T.
,
Kotilainen
,
M.
,
Lang
,
J.
, and
Slocum
,
A.
, 2005, “
Deep-Reactive Ion-Etched Compliant Starting Zone Electrostatic Zipping Actuators
,”
J. Microelectromech. S.
,
14
(
6
), pp.
1283
1297
.
28.
Das
,
K.
, and
Batra
,
R. C.
, 2009, “
Pull-In and Snap-Through Instabilities in Transient Deformations of Microelectromechanical Systems
,”
J. Micromech. Microeng.
,
19
(
3
),
p.
035008
.
You do not currently have access to this content.