An experimental and numerical study of ballistic impacts on steel plates at various temperatures (700 °C, 400 °C and room temperature) has been carried out. The motivation for this work is the blade-off event that may occur inside a jet engine turbine. However, as a first attempt to understand this complex loading process, a somewhat simpler approach is carried out in the present work. The material used in this study is the FV535 martensitic stainless steel, which is one of the most commonly used materials for turbine casings. Based on material test data, a Modified Johnson-Cook (MJC) model was calibrated for numerical simulations using the LS-DYNA explicit finite element code. To check the mesh size sensitivity, 2D axisymmetric finite element models with three different mesh sizes and configurations were used for the various temperatures. Two fixed meshes with 64 and 128 elements over the 2 mm thick plate and one mesh with 32 elements over the thickness with adaptive remeshing were used in the simulations. Both the formation of adiabatic shear bands in the perforation process and the modeling of the thermal softening effects at high temperatures have been found crucial in order to achieve good results.

References

1.
Kolsky
,
H.
, 1963,
Stress Waves in Solids
,
Dover Publications
,
New York
.
2.
Recht
,
R. F.
, and
Ipson
T. W.
, 1963, “
Ballistic Perforation Dynamics
,”
J. Appl. Mech.
,
30
, pp.
384
390
.
3.
Cockcroft
,
M. G.
, and
Latham
,
D.
, 1968, “
Ductility and Workability of Metals
,”
J. Inst. Metals
,
96
, pp.
33
39
.
4.
Rice
,
J.
, and
Tracey
,
D.
, 1969, “
On Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
, pp.
201
217
.
5.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of 7th International Symposium on Ballistics
,
The Hague
,
Netherlands
, pp.
541
547
.
6.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985,
“Fracture Characteristics of 3 Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
21
, pp.
31
48
.
7.
Zerilli
,
F.
, and
Armstrong
,
R.
, 1987, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
, pp.
1816
1825
.
8.
Corbett
,
G.
,
Reid
,
S.
, and
Johnson
,
W.
, 1996, “
Impact Loading of Plates and Shells by Free-Flying Projectiles: A Review
,”
Int. J. Impact Eng.
,
18
(
2
), pp.
141
230
.
9.
Børvik
,
T.
,
Hopperstad
,
O.
,
Berstad
,
T.
, and
Langseth
,
M.
, 2001, “
A Computational Model of Viscoplasticity and Ductile Damage for Impact and Penetration
,”
Eur. J. Mech. A
,
20
, pp.
685
712
.
10.
Børvik
,
T.
,
Langseth
,
M.
,
Hopperstad
,
O.
, and
Malo
,
K.
, 2002, “
Perforation of 12 mm Thick Steel Plates by 20 mm Diameter Projectiles With Flat, Hemispherical and Conical Noses Part I: Experimental Study
,”
Int. J. Impact Eng.
,
27
, pp.
19
35
.
11.
Børvik
,
T.
,
Hopperstad
,
O.
,
Berstad
,
T.
, and
Langseth
,
M.
, 2002, “
Perforation of 12 mm Thick Steel Plates by 20 mm Diameter Projectiles With Flat, Hemispherical and, Conical Noses Part II: Numerical Simulations
,”
Int. J. Impact Eng.
,
27
, pp.
37
64
.
12.
Clausen
,
A.
,
Børvik
,
T.
,
Hopperstad
,
O.
, and
Benallal
,
A.
, 2004, “
Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality
,”
Mater. Sci. Eng. A
,
364
, pp.
260
272
.
13.
Børvik
,
T.
,
Clausen
,
A.
,
Hopperstad
,
O.
, and
Langseth
,
M.
, 2004, “
Perforation of AA5083-H116 Aluminium Plates With Conical-Nose Steel Projectiles-Experimental Study
,”
Int. J. Impact Eng.
,
30
, pp.
367
384
.
14.
Dey
,
S.
,
Børvik
,
T.
,
Hopperstad
,
O.
,
Leinum
,
J.
, and
Langseth
,
M.
, 2004, “
The Effect of Target Strength on the Perforation of Steel Plates Using Three Different Projectile Nose Shapes
,”
Int. J. Impact Eng.
,
30
, pp.
1005
1038
.
15.
Børvik
,
T.
,
Clausen
,
A.
,
Eriksson
,
M.
,
Berstad
,
T.
,
Hopperstad
,
O.
, and
Langseth
,
M.
, 2005, “
Experimental and Numerical Study on the Perforation of AA6005-T6 Panels
,”
Int. J. Impact Eng.
,
32
, pp.
35
64
.
16.
Teng
,
X.
, and
Wierzbicki
,
T.
, 2006, “
Evaluation of Six Fracture Models in High Velocity Perforation
,”
Eng. Fract. Mech.
,
73
, pp.
1653
1678
.
17.
Dey
,
S.
,
Børvik
,
T.
,
Hopperstad
,
O.
, and
Langseth
,
M.
, 2006, “
On the Influence of Fracture Criterion in Projectile Impact of Steel Plates
,”
Comput. Mater. Sci.
,
38
, pp.
176
191
.
18.
Gálvez
,
F.
,
Cendon
,
D.
,
Enfedaque
,
A.
, and
Sanchez-Galvez
,
V.
, 2006, “
High Strain Rate and High Temperature Behaviour of Metallic Materials for Jet Engine Turbine Containment
,”
J. Phys. IV
,
134
, pp.
269
274
.
19.
Dey
,
S.
,
Børvik
,
T.
,
Hopperstad
,
O.
, and
Langseth
,
M.
, 2007, “
On the Influence of Constitutive Relation in Projectile Impact of Steel Plates
,”
Int. J. Impact Eng.
,
34
, pp.
464
486
.
20.
Dey
,
S.
,
Børvik
,
T.
,
Teng.
X.
, and
Hopperstad
,
O. S.
, 2007, “
On the Ballistic Resistance on Double-Layered Steel Plates: An Experimental and Numerical Investigation
,”
Int. J. Impact Eng.
,
34
, pp.
6701
6723
.
21.
LSTC, 2007,
LS-DYNA Keyword User’s Manual
, version 971, Livermore Software Technology Corporation, California.
22.
Børvik
,
T.
,
Forrestal
,
M.
,
Hopperstad
,
O.
,
Warren
,
T.
, and
Langseth
,
M.
, 2009, “
Perforation of AA5083-H116 Aluminium Plates With Conical-Nose Steel Projectiles—Calculations
,”
Int. J. Impact Eng.
,
36
, pp.
426
437
.
23.
Børvik
,
T.
,
Dey
,
S.
, and
Clausen
,
A.
, 2009, “
Perforation Resistance of Five Different High-Strength Steel Plates Subjected to Small-Arms Projectiles
,”
Int. J. Impact Eng.
,
36
, pp.
948
964
.
24.
Kane
,
A.
,
Børvik
,
T.
,
Hopperstad
,
O.
, and
Langseth
,
M.
, 2009,
“Finite Element Analysis of Plugging Failure in Steel Plates Struck by Blunt Projectiles
,”
J. Appl. Mech.
,
76
(
5
),
051302
.
25.
Børvik
,
T.
,
Hopperstad
,
O.
, and
Pedersen
,
K.
, 2010, “
Quasi-Brittle Fracture During Structural Impact of AA7075-T651 Aluminium Plates
,”
Int. J. Impact Eng.
,
37
, pp.
537
551
.
26.
Erice
,
B.
,
Gálvez
,
F.
,
Cendón
,
D.
, and
Sánchez-Gálvez
,
V.
, 2010, “
Mechanical Behavior of FV535 Steel Against Ballistic Impact at High Temperatures
,”
Proceedings of 25th International Symposium on Ballistics
,
Beijing, China
, pp.
1087
1096
.
27.
Erice
,
B.
,
Gálvez
,
F.
,
Cendón
,
D.
, and
Sánchez-Gálvez
,
V.
, 2010, “
Flow and Fracture Behaviour of FV535 Steel at Different Triaxialities, Strain Rates and Temperatures
,” (submitted).
28.
Kane
,
A.
,
Børvik
,
T.
,
Berstad
,
T.
,
Benallal
,
A.
,
Hopperstad
,
O.S.
“Failure Criteria With Unilateral Conditions for Simulation of Plate Perforation,”
European Journal of Mechanics/A Solids
(2011).
You do not currently have access to this content.