The mechanical system considered is a bilayer cantilever plate. The substrate and the film are linear elastic. The film is subjected to isotropic uniform prestresses due for instance to volume variation associated with cooling, heating, or drying. This loading yields deflection of the plate. We recall Stoney’s analytical formula linking the total mechanical stresses to this deflection. We also derive a relationship between the prestresses and the deflection. We relax Stoney’s assumption of very thin films. The analytical formulas are derived by assuming that the stress and curvature states are uniform and biaxial. To quantify the validity of these assumptions, finite element calculations of the three-dimensional elasticity problem are performed for a wide range of plate geometries, Young’s and Poisson’s moduli. One purpose is to help any user of the formulas to estimate their accuracy. In particular, we show that for very thin films, both formulas written either on the total mechanical stresses or on the prestresses, are equivalent and accurate. The error associated with the misfit between our theorical study and numerical results are also presented. For thicker films, the observed deflection is satisfactorily reproduced by the expression involving the prestresses and not the total mechanical stresses.

1.
Stoney
,
G. G.
, 1909, “
The Tension of Metallic Films Deposited by Electrolysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
82
(
553
), pp.
172
175
.
2.
Rosakis
,
A. J.
,
Singh
,
R. P.
,
Tsuji
,
Y.
,
Kolawa
,
E.
, and
Moore
,
N. R.
, 1998, “
Full Field Measurements of Curvature Using Coherent Gradient Sensing: Application to Thin Film Characterization
,”
Thin Solid Films
0040-6090,
325
(
1–2
), pp.
42
54
.
3.
Petersen
,
C.
,
Heldmann
,
C.
, and
Johannsmann
,
D.
, 1999, “
Internal Stresses During Film Formation of Polymer Latices
,”
Langmuir
0743-7463,
15
(
22
), pp.
7745
7751
.
4.
Tirumkudulu
,
M. S.
, and
Russel
,
W. B.
, 2005, “
Cracking in Drying Latex Films
,”
Langmuir
0743-7463,
21
(
11
), pp.
4938
4948
.
5.
Guisbiers
,
G.
,
Strehle
,
S.
, and
Wautelet
,
M.
, 2005, “
Modeling of Residual Stresses in Thin Films Deposited by Electron Beam Evaporation
,”
Microelectron. Eng.
0167-9317,
82
(
3–4
), pp.
665
669
.
6.
Gravier
,
S.
,
Coulombier
,
M.
,
Safi
,
A.
,
Andre
,
N.
,
Boe
,
A.
,
Raskin
,
J. -P.
, and
Pardoen
,
T.
, 2009, “
New On-Chip Nanomechanical Testing Laboratory—Applications to Aluminum and Polysilicon Thin Films
,”
J. Microelectromech. Syst.
1057-7157,
18
(
3
), pp.
555
569
.
7.
Flinn
,
P.
,
Gardner
,
D.
, and
Nix
,
W.
, 1987, “
Measurement and Interpretation of Stress in Aluminum-Based Metallization as a Function of Thermal History
,”
IEEE Trans. Electron Devices
0018-9383,
34
(
3
), pp.
689
699
.
8.
Freund
,
L. B.
, and
Suresh
,
S.
, 2004,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University
,
Cambridge, UK
.
9.
Ngo
,
D.
,
Feng
,
X.
,
Huang
,
Y.
,
Rosakis
,
A. J.
, and
Brown
,
M. A.
, 2007, “
Thin Film/Substrate Systems Featuring Arbitrary Film Thickness and Misfit Strain Distributions. Part I: Analysis for Obtaining Film Stress From Non-Local Curvature Information
,”
Int. J. Solids Struct.
0020-7683,
44
(
6
), pp.
1745
1754
.
10.
Feng
,
X.
,
Huang
,
Y.
, and
Rosakis
,
A. J.
, 2007, “
On the Stoney Formula for a Thin Film/Substrate System With Nonuniform Substrate Thickness
,”
ASME J. Appl. Mech.
0021-8936,
74
(
6
), pp.
1276
1281
.
11.
Shen
,
Y. L.
,
Suresh
,
S.
, and
Blech
,
I. A.
, 1996, “
Stresses, Curvatures, and Shape Changes Arising From Patterned Lines on Silicon Wafers
,”
J. Appl. Phys.
0021-8979,
80
(
3
), pp.
1388
1398
.
12.
Wikström
,
A.
,
Gudmundson
,
P.
, and
Suresh
,
S.
, 1999, “
Thermoelastic Analysis of Periodic Thin Lines Deposited on a Substrate
,”
J. Mech. Phys. Solids
0022-5096,
47
(
5
), pp.
1113
1130
.
13.
Salamon
,
N. J.
, and
Masters
,
C. B.
, 1995, “
Bifurcation in Isotropic Thin-Film Substrate Plates
,”
Int. J. Solids Struct.
0020-7683,
32
(
3–4
), pp.
473
481
.
14.
Freund
,
L. B.
, 2000, “
Substrate Curvature Due to Thin Film Mismatch Strain in the Nonlinear Deformation Range
,”
J. Mech. Phys. Solids
0022-5096,
48
(
6–7
), pp.
1159
1174
.
15.
Zhang
,
Y.
, and
Zhao
,
Y. P.
, 2006, “
Applicability Range of Stoney’s Formula and Modified Formulas for a Film/Substrate Bilayer
,”
J. Appl. Phys.
0021-8979,
99
(
5
), p.
053513
.
16.
Janssen
,
G.
,
Abdalla
,
M.
,
van Keulen
,
F.
,
Pujada
,
B.
, and
van Venrooy
,
B.
, 2009, “
Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments From Polycrystalline Steel Strips to Single Crystal Silicon Wafers
,”
Thin Solid Films
0040-6090,
517
(
6
), pp.
1858
1867
.
17.
Huang
,
Y.
, and
Rosakis
,
A. J.
, 2005, “
Extension of Stoney’s Formula to Non-Uniform Temperature Distributions in Thin Film/Substrate Systems. The Case OF Radial Symmetry
,”
J. Mech. Phys. Solids
0022-5096,
53
(
11
), pp.
2483
2500
.
18.
Ngo
,
D.
,
Huang
,
Y.
,
Rosakis
,
A. J.
, and
Feng
,
X.
, 2006, “
Spatially Non-Uniform, Isotropic Misfit Strain in Thin Films Bonded on Plate Substrates: The Relation Between Non-Uniform Film Stresses and System Curvatures
,”
Thin Solid Films
0040-6090,
515
(
4
), pp.
2220
229
.
19.
Huang
,
Y.
, and
Rosakis
,
A. J.
, 2007, “
Extension of Stoney’s Formula to Arbitrary Temperature Distributions in Thin Film/Substrate Systems
,”
ASME J. Appl. Mech.
0021-8936,
74
(
6
), pp.
1225
1233
.
20.
Feng
,
X.
,
Huang
,
Y.
, and
Rosakis
,
A. J.
, 2008, “
Stresses in a Multilayer Thin Film/Substrate System Subjected to Nonuniform Temperature
,”
ASME J. Appl. Mech.
0021-8936,
75
(
2
), p.
021022
.
21.
Feng
,
X.
,
Huang
,
Y.
, and
Rosakis
,
A.
, 2008, “
Multi-Layer Thin Films/Substrate System Subjected to Non-Uniform Misfit Strains
,”
Int. J. Solids Struct.
0020-7683,
45
(
13
), pp.
3688
3698
.
22.
Freund
,
L. B.
,
Floro
,
J. A.
, and
Chason
,
E.
, 1999, “
Extensions of the Stoney Formula for Substrate Curvature to Configurations With Thin Substrates or Large Deformations
,”
Appl. Phys. Lett.
0003-6951,
74
(
14
), pp.
1987
1989
.
23.
Klein
,
C. A.
, 2000, “
How Accurate are Stoney’s Equation and Recent Modifications
,”
J. Appl. Phys.
0021-8979,
88
(
9
), pp.
5487
5489
.
24.
Guyot
,
N.
,
Harmand
,
Y.
, and
Mézin
,
A.
, 2004, “
The Role of the Sample Shape and Size on the Internal Stress Induced Curvature Of Thin-Film Substrate Systems
,”
Int. J. Solids Struct.
0020-7683,
41
(
18–19
), pp.
5143
5154
.
25.
Lakes
,
R. S.
, 1987, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
0036-8075,
235
, pp.
1038
1040
.
26.
Evans
,
K. E.
, 1991, “
Auxetic Polymers—A New Range of Materials
,”
Endeavour
0013-7162,
15
(
4
), pp.
170
174
.
27.
Yang
,
W.
,
Li
,
Z. M.
,
Shi
,
W.
,
Xie
,
B. H.
, and
Yang
,
M. B.
, 2004, “
On Auxetic Materials
,”
J. Mater. Sci.
0022-2461,
39
(
10
), pp.
3269
3279
.
28.
Timoshenko
,
S.
, and
Woinowsky-Kreiger
,
S.
, 1959,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
29.
Pomeroy
,
R. J.
, 1970, “
The Effect of Anticlastic Bending on the Curvature of Beams
,”
Int. J. Solids Struct.
0020-7683,
6
(
2
), pp.
277
285
.
You do not currently have access to this content.