This paper provides full asymptotic crack-tip field solutions for an antiplane (mode-III) stationary crack in a functionally graded material. We use the complex variable approach and an asymptotic scaling factor to provide an efficient procedure for solving standard and perturbed Laplace equations associated with antiplane fracture in a graded material. We present the out-of-plane displacement and the shear stress solutions for a crack in exponentially and linearly graded materials by considering the gradation of the shear modulus either parallel or perpendicular to the crack. We discuss the characteristics of the asymptotic solutions for a graded material in comparison with the homogeneous solutions. We address the effects of the mode-III stress intensity factor and the antiplane T-stress onto crack-tip field solutions. Finally, engineering significance of the present work is discussed.

1.
Hirai
,
T.
, 1993, “
Functionally Gradient Materials and Nanocomposites
,”
Proceedings of the Second International Symposium on Functionally Gradient Materials
,
J. B.
Holt
,
M.
Koizumi
,
T.
Hirai
, and
Z. A.
Munir
, eds.,
The American Ceramic Society
,
Westville, OH
, Vol.
34
, pp.
11
20
.
2.
Paulino
,
G. H.
,
Jin
,
Z. H.
, and
Dodds
,
R. H.
, Jr.
, 2003, “
Failure of Functionally Graded Materials
,”
Comprehensive Structural Integrity
, Vol.
2
,
B.
Karihaloo
and
W. G.
Knauss
, eds.,
Elsevier
,
New York
, pp.
607
644
.
3.
Ilschner
,
B.
, 1996, “
Processing-Microstructure-Property Relationships in Graded Materials
,”
J. Mech. Phys. Solids
0022-5096,
44
(
5
), pp.
647
653
.
4.
Parameswaran
,
V.
, and
Shukla
,
A.
, 2002, “
Asymptotic Stress Fields for Stationary Cracks Along the Gradient in Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
69
(
3
), pp.
240
243
.
5.
Jain
,
N.
,
Rousseau
,
C. E.
, and
Shukla
,
A.
, 2004, “
Crack-Tip Stress Fields in Functionally Graded Materials With Linearly Varying Properties
,”
Theor. Appl. Fract. Mech.
0167-8442,
42
, pp.
155
170
.
6.
Erdogan
,
F.
, 1985, “
The Crack Problem for Bonded Nonhomogeneous Materials Under Antiplane Shear Loading
,”
ASME J. Appl. Mech.
0021-8936,
52
(
4
), pp.
823
828
.
7.
Paulino
,
G. H.
,
Fannjiang
,
A. C.
, and
Chan
,
Y. -S.
, 2003, “
Gradient Elasticity Theory for Mode III Fracture in Functionally Graded Materials—Part I: Crack Perpendicular to the Material Gradation
,”
ASME J. Appl. Mech.
0021-8936,
70
(
4
), pp.
531
542
.
8.
Kubair
,
D. V.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
, 2005, “
Asymptotic Analysis of a Mode III Stationary Crack in a Ductile Functionally Graded Material
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
461
467
.
9.
Ma
,
L.
,
Li
,
J.
,
Abdelmoula
,
R.
, and
Wu
,
L. -Z.
, 2007, “
Mode III Crack Problem in a Functionally Graded Magneto-Electro-Elastic Strip
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
5518
5537
.
10.
Chan
,
Y. -S.
,
Paulino
,
G. H.
, and
Fannjiang
,
A. C.
, 2008, “
Gradient Elasticity Theory for Mode III Fracture in Functionally Graded Materials—Part II: Crack Parallel to the Material Gradation
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
061015
.
11.
Parameswaran
,
V.
, and
Shukla
,
A.
, “Crack-Tip Stress Fields for Dynamic Fracture in Functionally Gradient Materials.”
12.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff Ltd.
,
Holland
.
13.
Wang
,
X.
, and
Hasebe
,
N.
, 2003, “
Complex Variable Solution of Plane Problem for Functionally Graded Materials
,”
IUTAM Symposium on Dynamics of Advanced Materials and Smart Structures
,
K.
Watanabe
and
F.
Ziegler
, eds. pp.
449
458
.
14.
Eischen
,
J. W.
, 1987, “
Fracture of Non-Homogeneous Materials
,”
Int. J. Fract.
0376-9429,
34
(
1
), pp.
3
22
.
15.
Sih
,
G. C.
, and
Liebowitz
,
H.
, 1968, “
Mathematical Theories of Brittle Fracture
,”
Fracture
, Vol.
2
,
H.
Liebowitz
, ed.,
Academic Press
,
New York
.
16.
Yang
,
S.
, and
Yuan
,
F. G.
, 2000, “
Determination and Representation of the Stress Coefficient Terms by Path-Independent Integrals in Anisotropic Cracked Solids
,”
Int. J. Fract.
0376-9429,
101
(
4
), pp.
291
319
.
17.
Kim
,
J. -H.
, and
Paulino
,
G. H.
, 2002, “
Finite Element Evaluation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
8
), pp.
1903
1935
.
18.
Kim
,
J. -H.
, and
Paulino
,
G. H.
, 2002, “
Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials
,”
ASME J. Appl. Mech.
0021-8936,
69
(
4
), pp.
502
514
.
19.
KC
,
A.
, and
Kim
,
J. -H.
, 2008, “
Interaction Integrals for Thermal Fracture of Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
2542
2565
.
20.
Karihaloo
,
B. L.
, and
Xiao
,
Q. Z.
, 2001, “
Higher Order Terms of the Crack Tip Asymptotic Field for a Notched Three-Point Bend Beam
,”
Int. J. Fract.
0376-9429,
112
, pp.
111
128
.
21.
Kardomateas
,
G. A.
,
Carlson
,
R. L.
,
Soediono
,
A. H.
, and
Schrage
,
D. P.
, 1993, “
Near Tip Stress and Strain Fields for Short Elastic Cracks
,”
Int. J. Fract.
0376-9429,
62
, pp.
219
232
.
22.
Giraud
,
S.
, and
Canel
,
J.
, 2008, “
Young’s Modulus of Some SOFCS Materials as a Function of Temperature
,”
J. Eur. Ceram. Soc.
0955-2219,
28
, pp.
77
83
.
You do not currently have access to this content.