Abstract

In classical stochastic linearization method, the nonlinear force is replaced by an equivalent linear one. Several nonclassical schemes were suggested in recent years, based on potential or complementary energy criteria. Here, these criteria are compared with each other, and the classical stochastic linearization scheme, to determine their efficacy.

References

1.
Booton
,
R. C.
, 1954, “
The Analysis of Nonlinear Control Systems With Random Inputs
,”
IEEE Trans. Circuit Theory
0018-9324,
1
, pp.
9
18
.
2.
Kazakov
,
I. E.
, 1954, “
An Approximate Method for the Statistical Investigation of Nonlinear Systems
,”
Trudi Voenno–Vozdushnoi Inzhenernoi Akademii imeni Professora N. E. Zhukovskogo
,
394
, pp.
1
52
, in Russian.
3.
Caughey
,
T. K.
, 1953, “
Response of Nonlinear Systems to Random Excitation
,” Lecture Notes, California Institute of Technology.
4.
Caughey
,
T. K.
, 1963, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
0001-4966,
35
, pp.
1706
1711
.
5.
Falsone
,
G.
, and
Ricciardi
,
G.
, 2003, “
Stochastic Linearization: Classical Approach and New Developments
,”
Recent Research Developments in Structural Dynamics
,
A.
Luongo
, ed., Rome, Italy, pp.
81
106
.
6.
Socha
,
L.
, 2005, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part I: Theory
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
178
204
;
Socha
,
L.
, 2005, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part II: Applications
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
303
315
.
7.
Bernard
,
P.
, and
Wu
,
L. M.
, 1998, “
Stochastic Linearization: The Theory
,”
J. Appl. Probab.
0021-9002,
35
, pp.
718
730
.
8.
Elishakoff
,
I.
, 2000, “
Stochastic Linearization Technique: A New Interpretaion and a Selective Review
,”
Shock Vib. Dig.
0583-1024,
32
(
3
), pp.
179
188
.
9.
Wang
,
C.
, and
Zhang
,
X. T.
, 1985, “
An Improved Equivalent Linearization Technique in Nonlinear Random Vibration
,”
Proceedings of the International Conference on Nonlinear Mechanics
, Beijing, China, pp.
959
964
.
10.
Zhang
,
X. T.
,
Elishakoff
,
I.
, and
Zhang
,
R. C.
, 1991, “
A Stochastic Linearization Technique Based on Minimum Mean Square Derivation of Potential Energies
,”
Stochastic Structural Dynamics: New Theorical Developments
,
Y. K.
Lin
and
I.
Elishakoff
, eds.,
Springer-Verlag
,
Berlin
, pp.
327
338
.
11.
Elishakoff
,
I.
, and
Zhang
,
R. C.
, 1992, “
Comparison of the New Energy-Based Versions of the Stochastic Linearization Technique
,”
Nonlinear Stochastic Mechanics
,
N.
Bellomo
and
F.
Casciati
, eds.,
Springer
,
Berlin
, pp.
201
212
.
12.
Elishakoff
,
I.
, and
Zhang
,
X. T.
, 1992, “
An Appraisal of Different Stochastic Linearization Techniques
,”
J. Sound Vib.
0022-460X,
153
, pp.
370
375
.
13.
Falsone
,
G.
, and
Elishakoff
,
I.
, 1994, “
Modified Stochastic Linearization Technique for Colored-Noise Excitation of Duffing Oscillator
,”
Int. J. Non-Linear Mech.
0020-7462,
29
, pp.
65
69
.
14.
Fang
,
J.
,
Elishakoff
,
I.
, and
Caimi
,
R.
, 1995, “
Nonlinear Response of a Beam under Stationary Random Excitation by Improved Stochastic Linearization Method
,”
Appl. Math. Model.
0307-904X,
19
, pp.
106
111
.
15.
Muravyov
,
A.
,
Turner
,
T.
,
Robinson
,
J.
, and
Rizzi
,
S.
, 1999, “
A New Stochastic Equivalent Linearization Implementation for Prediction of Geometrically Nonlinear Vibrations
,”
Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Conference
, St. Louis, AIAA Paper No. 59-1376, Vol.
2
, pp.
1489
1497
.
16.
Zhang
,
X. T.
, 1992, “
Study of Weighted Energy Technque in Analysis of Nonlinear Random Vibration
,”
Nonlinear Vibration and Chaos
,
Tianjin University Press
,
Tianjin
, pp.
139
144
.
17.
Zhang
,
R. C.
,
Elishakoff
,
I.
, and
Shinozuka
,
M.
, 1994, “
Analysis of Nonlinear Sliding Structures by Modified Stochastic Linearization Methods
,”
Nonlinear Dyn.
0924-090X,
5
, pp.
299
312
.
18.
Zhang
,
X. T.
, and
Zhang
,
R. C.
, 1999, “
Energy-Based Stochastic Equivalent Linearization With Optimized Power
,”
Stochastic Structural Dynamics
,
B. F.
Spencer
and
E. A.
Johnson
, eds.,
Balkema
,
Rotterdam
, pp.
113
117
.
19.
Elishakoff
,
I.
, and
Bert
,
C. W.
, 2000, “
Complementary Energy Criterion in Nonlinear Stochastic Dynamics
,”
Applications of Statistics and Probability
,
Balkema
,
Rotterdam
, pp.
821
825
.
20.
Elishakoff
,
I.
,
Fang
,
J.
, and
Caimi
,
R.
, 1995, “
Random Vibration of a Nonlinearly Deformed Beam by a New Stochastic Linearization Technique
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
1571
1584
.
21.
Stratonovich
,
R. L.
, 1961,
Selected Questions of the Fluctuations Theory in Radiotechnics (in Russian)
,
Sovietskoe Radio Publishers
,
Moscow
.
22.
Piszczek
,
K.
, and
Niziol
,
J.
, 1984,
Random Vibration of Mechanical Systems
,
Ellis Horwood
,
Chichester
.
23.
Roberts
,
J. B.
, 1981, “
Response of Nonlinear Mechanical Systems to Random Excitation. Part 2: Equivalent Linearization and Other Methods
,”
Shock Vib. Dig.
0583-1024,
13
(
4
), pp.
15
28
.
24.
Li
,
W.
,
Chang
,
C. W.
, and
Tseng
,
S.
, 2006, “
The Linearization Method Based on the Equivalence of Dissipated Structural Systems
,”
J. Sound Vib.
0022-460X,
295
, pp.
797
809
.
25.
Liang
,
J. W.
, and
Feeny
,
B.
, 2006, “
Balancing Energy to Estimate Damping Parameters in Forced Oscillators
,”
J. Sound Vib.
0022-460X,
295
, pp.
988
998
.
26.
Casciati
,
F.
,
Faravelli
,
L.
, and
Hasofer
,
A. M.
, 1993, “
A New Philosophy for Stochastic Equivalent Linearization
,”
Probab. Eng. Mech.
0266-8920,
9
, pp.
179
185
.
You do not currently have access to this content.