The classical strength of materials for beams is represented through the first two terms of the asymptotic expansion of the solution of Navier’s equations. The method of asymptotic expansions with respect to the inverse of the slenderness of the beam permits us to obtain an approximate solution of Saint-Venant’s problem. For the elasticity of the second order, the displacement field is obtained as the sum of a series, the general term of which at the nth order is the solution of a differential recursive system. We presently propose a general way of solving this kind of system. The exact solution is given explicitly in the case of a slender field (beam).

1.
Hay
,
G. E.
, 1942, “
The Finite Displacements of Thin Rods
,”
Trans. Am. Math. Soc.
0002-9947,
51
(
1
), pp.
65
102
.
2.
Muller
,
P.
, 1970, “
Etude des déplacements finis d’une tige hyperélastique incompressible
,” Thèse de Doctorat de troisième cycle, Faculté des Sciences de Paris, France.
3.
Antman
,
S.
, 1972, “
The Theory of Rods
,”
Handbuch des Physik
, Vol.
VI(a/2)
,
Springer
,
Berlin
, pp.
641
700
.
4.
Rigolot
,
A.
, 1972, “
Sur une théorie asymptotique des poutres
,”
J. Mec.
0021-7832,
11
(
44
), pp.
673
703
.
5.
Rigolot
,
A.
, 1976, “
Sur une théorie asymptotique des poutres droites
,” Thèse de Doctorat d’Etat, Université Pierre et Marie Curie-Paris 6, France.
6.
Courbon
,
J.
, 1966,
Résistance des Matériaux
,
Dunod
,
Paris
.
7.
Ciarlet
,
P. G.
, and
Destuynder
,
P.
, 1979, “
A Justification of a Nonlinear Model in Plate Theory
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
17-18
, pp.
227
258
.
8.
Ciarlet
,
P. G.
, and
Destuynder
,
P.
, 1979, “
A Justification of the Two-Dimensional Linear Plate Model
,”
J. Mec.
0021-7832,
17/18
, pp.
315
344
.
9.
Cimetière
,
A.
,
Geymonat
,
G.
,
Le Dret
,
H.
,
Raoult
,
A.
, and
Tutek
,
Z.
, 1986, “
A Derivation of a Nonlinear Rod Model From Three-Dimensional Elasticity
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
302
(
19
), pp.
697
700
.
10.
Cimetière
,
A.
,
Geymonat
,
G.
,
Le Dret
,
H.
,
Raoult
,
A.
, and
Tutek
,
Z.
, 1988, “
Asymptotic Theory and Analysis for Displacements and Stress Distribution in Nonlinear Elastic Straight Slender Rods
,”
J. Elast.
0374-3535,
19
, pp.
111
161
.
11.
Alvarez-Vazquez
,
L. -J.
,
Samartin
,
A.
, and
Viano
,
J. -M.
, 2001, “
Mathematical Model for Elastic Beams With Longitudinally Variable Depth
,”
Asymptotic Anal.
0921-7134,
27
, pp.
75
93
.
12.
Sanchez-Hubert
,
J.
, and
Sanchez-Palencia
,
E.
, 1991, “
Couplage flexion-torsion-traction dans les poutres anisotropes à section hétérogène
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
0764-4450,
312
(
2
), pp.
337
344
.
13.
Jamal
,
R.
, and
Sanchez-Palencia
,
E.
, 1996, “
Théorie asymptotique des tiges courbes anisotropes
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
322
(
1
), pp.
1099
1106
.
14.
Sanchez-Hubert
,
J.
, and
Sanchez-Palencia
,
E.
, 1999, “
Statics of Curved Rods on Account of Torsion and Flexion
,”
Eur. J. Mech. A/Solids
0997-7538,
18
, pp.
365
390
.
15.
Trabucho
,
L.
, and
Viaño
,
J. M.
, 1996, “
Mathematical Modelling of Rods
,”
Handbook of Numerical Analysis
, Vol.
IV
,
North-Holland
,
Amsterdam
, pp.
487
974
.
16.
Rigolot
,
A.
, 1977, “
Déplacements finis et petites déformations des poutres droites: Analyse asymptotique de la solution à grande distance des bases
,”
Journal de la Mécanique Appliquée
,
1
(
2
), pp.
175
206
.
17.
Rigolot
,
A.
, 1977, “
Approximation asymptotique des vibrations de flexion des poutres droites élastiques
,”
J. Mec.
0021-7832,
16
(
4
), pp.
493
529
.
18.
Wolfram
,
S.
, 1999,
The Mathematica Book
, 4th ed.,
Wolfram Media
,
Champaign, IL
.
19.
Plumat
,
Y.
, 1976, “
Contribution à l’étude asymptotique des poutres circulaires
,” Thèse de Doctorat de troisième cycle, Faculté des Sciences de Paris, France.
20.
Germain
,
P.
, 1973,
Cours de mécanique des milieux continus
,
Masson
,
Paris
.
21.
Lions
,
J. -L.
, and
Magenes
,
E.
, 1970,
Problèmes aux limites non homogènes et applications
,
Dunod
,
Paris
.
You do not currently have access to this content.