This paper deals with the M-integral analysis for a nano-inclusion in plane elastic materials under uni-axial or bi-axial loadings. Based on previous works (Gurtin and Murdoch, 1975, “A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. Anal., 57, pp. 291–323; Mogilevskaya, et al., 2008, “Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects,” J. Mech. Phys. Solids, 56, pp. 2298–2327), the surface effect induced from the surface tension and the surface Lamé constants is taken into account, and an analytical solution is obtained. Four kinds of inclusions including soft inclusion, hard inclusion, void, and rigid inclusions are considered. The variable tendencies of the M-integral for each of four nano-inclusions against the loading or against the inclusion radius are plotted and discussed in detail. It is found that in nanoscale the surface parameters for the hard inclusion or rigid inclusion have a little or little influence on the M-integral, and the values of the M-integral are always negative as they would be in macroscale, whereas the surface parameters for the soft inclusion or void yield significant influence on the M-integral and the values of the M-integral could be either positive or negative depending on the loading levels and the surface parameters. Of great interest is that there is a neutral loading point for the soft inclusion or void, at which the M-integral transforms from a negative value to a positive value, and that the bi-axial loading yields similar variable tendencies of the M-integral as those under the uni-axial tension loading. Moreover, the bi-axial tension loading increases the neutral loading point, whereas the bi-axial tension-compression loading decreases it. Particularly, the magnitude of the negative M-integral representing the energy absorbing of the soft inclusion or void increases very sharply as the radius of the soft inclusion or void decreases from 5 nm to 1 nm.

1.
Ortiz
,
M.
, 1999, “
Nanomechanics of Defects in Solids
,”
Adv. Appl. Mech.
0065-2156,
36
, pp.
2
79
.
2.
Kuzumaki
,
T.
,
Miyazawa
,
K.
,
Ichinose
,
H.
, and
Ito
,
K.
, 1998, “
Processing of Carbon Nanotube Reinforced Aluminum Composite
,”
J. Mater. Res.
0884-2914,
13
, pp.
2445
2449
.
3.
Cui
,
Y.
, and
Lieber
,
C. M.
, 2001, “
Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks
,”
Science
0036-8075,
291
, pp.
851
853
.
4.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
, pp.
139
147
.
5.
Shenoy
,
V. B.
, 2002, “
Size-Dependent Rigidities of Nanosized Torsional Elements
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
4039
4052
.
6.
Gibbs
,
J. W.
, 1906,
Scientific Papers
, Vol.
1
,
Longmans-Green
,
London
.
7.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
An Atomistic Interpretation of Interface Stress
,”
Scr. Mater.
1359-6462,
39
, pp.
1653
1661
.
8.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
, pp.
291
323
.
9.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larché
,
F.
, 1988, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
, pp.
1093
1109
.
10.
Sharma
,
P.
, and
Ganti
,
S.
, 2002, “
Interfacial Elasticity Corrections to Size-Dependent Strain-State of Embedded Quantum Dots
,”
Phys. Status Solidi B
0370-1972,
234
, pp.
R10
R12
.
11.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
663
671
.
12.
Sharma
,
P.
, and
Wheeler
,
L. T.
, 2007, “
Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
447
455
.
13.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
, 2003, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
535
537
.
14.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Luo
,
Z. Y.
, 2005, “
Stress Concentration Tensors of Inhomogeneities With Interface Effects
,”
Mech. Mater.
0167-6636,
37
, pp.
723
736
.
15.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Eshelby Formalism for Nano-Inhomogeneities
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
3335
3353
.
16.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
, 2006, “
Size-Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
5055
5065
.
17.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
, 2007, “
Analytical Solution for Size-Dependent Elastic Field of a Nanoscale Circular Inhomogeneity
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
568
574
.
18.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
, 2008, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2298
2327
.
19.
Wang
,
G. F.
, and
Wang
,
T. J.
, 2006, “
Surface Effects on the Diffraction of Plane Compressional Waves by a Nanosized Circular Hole
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
231923
.
20.
Yang
,
F. Q.
, 2004, “
Size-Dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations
,”
J. Appl. Phys.
0021-8979,
95
, pp.
3516
3520
.
21.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1574
1596
.
22.
Marian
,
J.
,
Knap
,
J.
, and
Ortiz
,
M.
, 2005, “
Nanovoid Deformation in Aluminum Under Simple Shear
,”
Acta Mater.
1359-6454,
53
, pp.
2893
2900
.
23.
Borodich
,
F. M.
, and
Keer
,
L. M.
, 2004, “
Evaluation of Elastic Modulus of Materials by Adhesive (No-Slip) Nano-Indentation
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
, pp.
507
514
.
24.
Hu
,
N.
,
Fukunaga
,
H.
,
Lu
,
C.
,
Kameyama
,
M.
, and
Yan
,
B.
, 2003, “
Prediction of Elastic Properties of Carbon Nanotube Reinforced Composites
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
1685
1710
.
25.
Lloyd
,
S. J.
,
Castellero
,
A.
,
Giuliani
,
F.
,
Long
,
Y.
,
McLaughlin
,
K. K.
,
Molina-Aldareguia
,
J. M.
,
Stelmashenko
,
N. A.
,
Vandeperre
,
L. J.
, and
Clegg
,
W. J.
, 2003, “
Observations of Nanoindents Via Cross-Sectional Transmission Electron Microscopy: A Survey of Deformation Mechanisms
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
2521
2543
.
26.
Jayaweera
,
N. B.
,
Downes
,
J. R.
,
Frogley
,
M. D.
,
Hopkinson
,
M.
,
Bushby
,
A. J.
,
Kidd
,
P.
,
Kelly
,
A.
, and
Dunstan
,
D. J.
, 2003, “
The Onset of Plasticity in Nanoscale Contact Loading
,”
Proc. R. Soc. London, Ser. A
0950-1207,
459
, pp.
2049
2068
.
27.
Garg
,
A.
,
Han
,
J.
, and
Sinnott
,
S. B.
, 1998, “
Interactions of Carbon-Nanotube Proximal Probe Tips With Diamond and Graphene
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
2260
3
.
28.
Poncharal
,
P.
,
Wang
,
Z.
,
Ugarte
,
D.
, and
deHeer
,
W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
0036-8075,
283
, pp.
1513
1516
.
29.
Terrones
,
M.
,
Grobert
,
N.
,
Hsu
,
W.
,
Zhu
,
Y.
,
Hu
,
W.
,
Terrones
,
H.
,
Hare
,
J.
,
Kroto
,
H.
, and
Walton
,
D.
, 1999, “
Advances in the Creation of Filled Nanotubes and Novel Nanowires
,”
MRS Bull.
0883-7694,
24
, pp.
43
49
.
30.
Wong
,
E.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1975
.
31.
Yakobson
,
B. I.
, 1998, “
Mechanical Relaxation and ‘Intramolecular Plasticity’ in Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
72
, pp.
918
920
.
32.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernhole
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
33.
Sharma
,
P.
, and
Ganti
,
S.
, 2005, “
Erratum: “Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies” [Journal of Applied Mechanics, 2004, 71(5), pp. 663–671]
,”
ASME J. Appl. Mech.
0021-8936,
72
, p.
628
.
34.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkauoi
,
M.
, 2005, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1827
1854
.
35.
Park
,
H. S.
, and
Klein
,
P. A.
, 2008, “
Surface Stress Effects on the Resonant Properties of Metal Nanowires: The Importance of Finite Deformation Kinematics and the Impact of the Residual Surface Stress
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
3144
3166
.
36.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1972, “
On a Class of Conservation Laws in Linearized and Finite Elastostatics
,”
Arch. Ration. Mech. Anal.
0003-9527,
44
, pp.
187
211
.
37.
Budiansky
,
B.
, and
Rice
,
J. R.
, 1973, “
Conservation Laws and Energy-Release Rates
,”
ASME J. Appl. Mech.
0021-8936,
40
, pp.
201
203
.
38.
Eshelby
,
J. D.
, 1974, “
Calculation of Energy Release Rate
,”
Prospects of Fracture Mechanics
,
G. C.
Sih
and
D.
Broek
, eds.,
Noordhoff International
,
Groningen, The Netherlands
, pp.
69
84
.
39.
Freund
,
L. B.
, 1978, “
Stress-Intensity Factor Calculations Based on a Conservation Integral
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
241
250
.
40.
Herrmann
,
A. G.
, and
Herrmann
,
G.
, 1981, “
On Energy Release Rates for a Plane Crack
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
525
528
.
41.
Eischen
,
J. W.
, and
Herrmann
,
G.
, 1987, “
Energy Release Rates and Related Balance Laws in Linear Elastic Defect Mechanics
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
388
392
.
42.
Choi
,
N. Y.
, and
Earmme
,
Y. Y.
, 1992, “
Evaluation of Stress Intensity Factors in Circular Arc-Shaped Interfacial Crack Using L Integral
,”
Mech. Mater.
0167-6636,
14
, pp.
141
153
.
43.
Seed
,
G. M.
, 1997, “
The Boussinesq Wedge and the Jk, L, and M Integrals
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
20
, pp.
907
916
.
44.
Chen
,
Y. H.
, 2001, “
M-Integral for Two Dimension Solids With Strongly Interacting Cracks. Part I: In an Infinite Brittle Solids
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3193
3212
.
45.
Chen
,
Y. H.
, 2001, “
M-Integral for Two-Dimensional Solids With Strongly Interacting Cracks. Part II: In the Brittle Phase of an Infinite Metal/Ceramic Biomaterial
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3213
3232
.
46.
Li
,
Q.
, and
Chen
,
Y. H.
, 2008, “
Surface Effect and Size Dependent on the Energy Release Due to a Nanosized Hole Expansion in Plane Elastic Materials
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
061008
.
You do not currently have access to this content.