Several magnetic force models were developed to interpret various phenomena of a soft ferromagnetic beam plate subjected to a uniform external magnetic field with different incident angles. In this paper, a new transverse magnetic force model for the interface between a ferromagnetic material and the air is derived with the continuation of magnetoelastic stress across the material boundary. It is noted that both the normal and the tangential components of magnetic field on the material boundary are considered in this model. By applying such a transverse magnetic force and the effect of magnetic viscous damping, a new theoretical model is constructed in this study to predict the natural frequency of a soft ferromagnetic beam plate placed in an in-plane magnetic field. The numerical results of the present study are displayed graphically and compared with the experimental data, which appeared in literature to assure the exactness of the present work.

1.
Moon
,
F. C.
, and
Pao
,
Y. H.
, 1968, “
Magnetoelastic Buckling of a Thin Plate
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
53
58
.
2.
Brown
,
W. F.
, Jr.
, 1966,
Magnetoelastic Interactions
,
Springer-Verlag
,
New York
.
3.
Pao
,
Y. H.
, and
Yeh
,
C. S.
, 1973, “
A Linear Theory for Soft Ferromagnetic Elastic Solids
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
415
436
.
4.
Eringen
,
A. C.
, 1989, “
Theory of Electromagnetic Elastic Plates
,”
Int. J. Eng. Sci.
0020-7225,
27
, pp.
363
375
.
5.
Eringen
,
A. C.
, and
Maugin
,
G. A.
, 1990,
Electrodynamics of Continua
, Vol.
I
,
Springer-Verlag
,
New York
.
6.
Sabir
,
M.
, and
Maugin
,
G. A.
, 1996, “
On the Fracture of Paramagnets and Soft Ferromagnets
,”
Int. J. Non-Linear Mech.
0020-7462,
31
, pp.
425
440
.
7.
Zhou
,
Y. H.
,
Zheng
,
X. J.
, and
Miya
,
K.
, 1995, “
Magnetoelastic Bending and Snapping of Ferromagnetic Plates in Oblique Magnetic Fields
,”
Fusion Eng. Des.
0920-3796,
30
, pp.
325
337
.
8.
Takagi
,
T.
,
Tani
,
J.
,
Matsubara
,
Y.
, and
Mogi
,
I.
, 1995, “
Dynamic Behavior of Fusion Structural Components Under Strong Magnetic Fields
,”
Fusion Eng. Des.
0920-3796,
27
, pp.
481
489
.
9.
Zhou
,
Y. H.
, and
Zheng
,
X. J.
, 1997, “
A General Expression of Magnetic Force for Soft Ferromagnetic Plates in Complex Magnetic Fields
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
1405
1417
.
10.
Zhou
,
Y. H.
, and
Miya
,
K.
, 1998, “
A Theoretical Prediction of Natural Frequency of a Ferromagnetic Beam Plate With Low Susceptibility in an In-Plane Magnetic Field
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
121
126
.
11.
Takagi
,
T.
, and
Tani
,
J.
, 1993, “
A New Numerical Analysis Method of Dynamic Behavior of a Thin Plate Under Magnetic Field Considering Magnetic Viscous Damping Effect
,”
Int. J. Appl. Electromagn. Mater.
0925-2096,
4
, pp.
35
42
.
12.
Lin
,
C. B.
, 1999, “
Destabilizing Effect of In-Plane Magnetic Field on Panel Flutter
,”
J. Mech.
1727-7191,
15
, pp.
79
88
.
13.
Lin
,
C. B.
, 2003, “
On a Bounded Elliptic Elastic Inclusion in Plane Magnetoelasticity
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
1547
1565
.
14.
Moon
,
F. C.
, 1984,
Magneto-Solid Mechanics
,
Wiley
,
New York
.
15.
McMeeking
,
R. M.
, and
Landis
,
C. M.
, 2005, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
581
590
.
16.
Suo
,
Z.
,
Zhao
,
X.
, and
Greene
,
W. H.
, 2008, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
467
486
.
17.
Rinaldi
,
C.
, and
Brenner
,
H.
, 2002, “
Body Versus Surface Forces in Continuum Mechanics: Is the Maxwell Stress Tensor a Physically Objective Cauchy Stress?
Phys. Rev. E
1063-651X,
65
, p.
036615
.
18.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
19.
Lin
,
C. B.
, and
Yeh
,
C. S.
, 2002, “
The Magnetoelastic Problem of a Crack in a Soft Ferromagnetic Solid
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
1
17
.
You do not currently have access to this content.