The particular solutions of a two-dimensional infinite wedge for various boundary conditions with lnr weak singularity have been investigated in this paper. The relations of the weak singularities and the discontinuities of the first kind of the boundary variables at a corner of a two-dimensional elastic body have been established. By using the relations, the singular behaviors of the unknown boundary variables at a corner of an elastic body can be obtained before solving the boundary value problem by using the boundary element method (BEM). Especially, if the boundary conditions at a corner are displacements prescribed, the values of the unknown tractions at the corner can be determined in advance. Thus, the difficulty related to the multivalued tractions at a corner in BEM analysis for problems with boundary displacements prescribed has been overcome completely. In addition, more appropriate shape functions for the unknown boundary field variables of a corner element can be constructed, and the accuracy of the BEM may be greatly increased.

1.
Williams
,
M. L.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Comers of Plates in Extension
,”
J. Appl. Mech.
0021-8936,
19
, pp.
526
528
.
2.
England
,
A. H.
, 1971, “
On Stress Singularities in Linear Elasticity
,”
Int. J. Eng. Sci.
0020-7225,
9
, pp.
571
585
.
3.
Rösel
,
R.
, 1987, “
On the Wedge Notch Eigenvalues
,”
Int. J. Fract.
0376-9429,
33
, pp.
61
71
.
4.
Vasilopoulos
,
D.
, 1988, “
On the Determination of Higher Order Terms of Singular Elastic Stress Fields Near Corners
,”
Numer. Math.
0029-599X,
53
, pp.
51
95
.
5.
Dempsey
,
J. P.
, and
Sinclair
,
G. B.
, 1979, “
On the Stress Singularities in the Plane Elasticity of the Composite Wedge
,”
J. Elast.
0374-3535,
9
, pp.
373
391
.
6.
Dempsey
,
J. P.
, 1981, “
The Wedge Subjected to Tractions: A Paradox Resolved
,”
J. Elast.
0374-3535,
11
, pp.
1
10
.
7.
Ting
,
T. C. T.
, 1984, “
The Wedge Subjected to Tractions: A Paradox Re-Examined
,”
J. Elast.
0374-3535,
14
, pp.
235
247
.
8.
Blinova
,
V. G.
, and
Linkov
,
A. M.
, 1995, “
A Method to Find Asymptotic Forms at the Common Apex of Elastic Wedges
,”
J. Appl. Math. Mech.
0021-8928,
59
(
2
), pp.
187
195
.
9.
Linkov
,
A. M.
, and
Rybarska-Rusinek
,
L.
, 2008, “
Numerical Method and Models for Anti-Plane Strain of a System With a Thin Elastic Wedge
,”
Arch. Appl. Mech.
0939-1533,
78
, pp.
821
831
.
10.
Wang
,
M. Z.
, 1986, “
The Wedge Subjected to General Tractions: A Paradox Resolved
,”
Acta Mech. Sin.
0459-1879,
18
, pp.
243
252
(in Chinese).
11.
Sinclair
,
G. B.
, 1999, “
Logarithmic Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
556
560
.
12.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
, 1984,
Boundary Element Techniques
,
Spring-Verlag
,
New York
.
13.
Portela
,
A.
,
Aliabadi
,
M. H.
, and
Rooke
,
D. P.
, 1991, “
Efficient Boundary Element Analysis of Sharp Notched Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
445
470
.
14.
Jaswon
,
M. A.
, and
Symm
,
G. T.
, 1977,
Integral Equation Methods in Potential Theory and Elasto-Statics
,
Academic
,
London
.
15.
Riccardella
,
P.
, 1973, “
An Implementation of the Boundary Integral Techniques for Plane Problems in Elasticity and Elasto-Plasticity
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
16.
Patterson
,
C.
, and
Sheik
,
M. A.
, 1984, “
Interelement Continuity in the Boundary Element Method
,”
Topics in Boundary Element Research
,
C. A.
Brebbia
, ed.,
Springer-Verlag
,
Berlin
, Vol.
1
, pp.
123
141
.
17.
Ma
,
J.
, and
Le
,
M.
, 1992, “
A New Method for Coupling of Boundary Element Method and Finite Element Method
,”
Appl. Math. Model.
0307-904X,
16
, pp.
43
46
.
18.
Mitra
,
A. K.
, and
Ingber
,
M. S.
, 1987, “
Resolving Difficulties in The BIEM Caused by Geometric Comers and Discontinuous Boundary Conditions
,”
Boundary Elements IX
,
C. A.
Brebbia
, ed.,
Computational Mechanics Publications
,
San Diego, CA
/
Academic
,
New York
, Vol.
1
, pp.
519
532
.
19.
Rudolphi
,
T.
,
Agarwal
,
R.
, and
Mitra
,
A.
, 1991, “
Coupling Boundary Integral Equations With Nonsingular Functional Equations by Exterior Collocation
,”
Eng. Anal. Boundary Elem.
0955-7997,
8
(
5
), pp.
245
251
.
20.
Gray
,
L. J.
, and
Lutz
,
E.
, 1990, “
On the Treatment of Comers in the Boundary Element Method
,”
J. Comput. Appl. Math.
0377-0427,
32
, pp.
369
86
.
21.
Krishnasamy
,
G.
,
Rizzo
,
F. J.
, and
Rudolphi
,
T. J.
, 1992, “
Continuity Requirements for Density Functions in the Boundary Integral Equation Method
,”
Comput. Mech.
0178-7675,
9
, pp.
267
284
.
22.
Martin
,
P. A.
, and
Rizzo
,
F. J.
, 1996, “
Hypersingular Integrals: How Smooth Must the Density Be
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
687
704
.
23.
Li
,
Z. L.
,
Zhan
,
F. L.
, and
Du
,
S. H.
, 2000, “
A Highly Accurate BEM in Fracture Mechanics
,”
Key Eng. Mater.
1013-9826,
183-187
, pp.
91
96
.
24.
Ke
,
L.
,
Wang
,
Ch.
, and
Zhan
,
F. L.
, 2002, “
BEM With Single-Node Quadratic Element in Crack Analysis
,”
Acta Mech. Solida Sinica
0894-9166,
23
, pp.
54
64
(in Chinese).
You do not currently have access to this content.