A nonlinear field theory of fracture mechanics is developed for crack propagation in paramagnetic and ferromagnetic materials from the global energy balance equation and the non-negative global dissipation requirement. The crack-front generalized J̃-integral is equivalent to the generalized energy release rate serving as the thermodynamic driving force for crack propagation and also related to the generalized energy-momentum tensor in a way similar to the material force method. On the basis of the developed theory, the generalized energy release rate method, the generalized J̃-integral method, and the extended essential work of fracture method are proposed for quasistatic and dynamic fracture characterization of magnetosensitive materials in the presence of magnetothermomechanical coupling and dissipative effects. The present work overcomes the drawbacks and limitations of conventional fracture mechanics and resolves the controversial issues on magnetoelastic fracture criterion. Especially, the crack-front generalized J̃-integral has an odd dependence on the magnetic induction intensity factor for a Griffith-type crack in a magnetoelastic solid.

1.
Shindo
,
Y.
, 1977, “
The Linear Magnetoelastic Problem for a Soft Ferromagnetic Elastic Solid With a Finite Crack
,”
ASME Trans. J. Appl. Mech.
,
44
, pp.
47
50
. 0021-8936
2.
Shindo
,
Y.
, 1978, “
Magnetoelastic Interaction of a Soft Ferromagnetic Elastic Solid With a Penny-Shaped Crack in a Constant Axial Magnetic Field
,”
Trans. ASME, J. Appl. Mech.
,
45
, pp.
291
296
. 0021-8936
3.
Sabir
,
M.
, and
Maugin
,
G. A.
, 1996, “
On the Fracture of Paramagnets and Soft Ferromagnets
,”
Int. J. Non-linear Mech.
,
31
, pp.
425
440
. 0020-7462
4.
Fomethe
,
A.
, and
Maugin
,
G. A.
, 1998, “
On the Crack Mechanics of Hard Ferromagnets
,”
Int. J. Non-Linear Mech.
0020-7462,
33
, pp.
85
95
.
5.
Maugin
,
G. A.
,
Epstein
,
M.
, and
Trimarco
,
C.
, 1992, “
Pseudomomentum and Material Forces in Inhomogeneous Materials (Application to the Fracture of Electromagnetic Materials in Electromagnetoelastic Fields)
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
1889
1900
.
6.
Trimarco
,
C.
, 2007, “
Material Electromagnetic Fields and Material Forces
,”
Arch. Appl. Mech.
,
77
, pp.
177
184
. 0939-1533
7.
Pak
,
Y. E.
, and
Hermann
,
G.
, 1986, “
Conservation Laws and the Material Momentum Tensor for the Elastic Dielectric
,”
Int. J. Eng. Sci.
0020-7225,
24
, pp.
1365
1372
.
8.
Pak
,
Y. E.
, 1990, “
Crack Extension Force in a Piezoelectric Material
,”
Trans. ASME J. Appl. Mech.
,
57
, pp.
647
653
. 0021-8936
9.
Maugin
,
G. A.
, and
Epstein
,
M.
, 1991, “
The Electroelastic Energy-Momentum Tensor
,”
Proc. R. Soc. London, Ser. A
1364-5021,
433
, pp.
299
312
.
10.
Suo
,
Z.
,
Kuo
,
C. M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
739
765
.
11.
Dascalu
,
C.
, and
Maugin
,
G. A.
, 1994, “
Energy-Release Rates and Path-Independent Integrals in Electroelastic Crack Propagation
,”
Int. J. Eng. Sci.
0020-7225,
32
, pp.
755
765
.
12.
Maugin
,
G. A.
, 1994, “
On the J-Integral and Energy-Release Rates in Dynamic Fracture
,”
Acta Mech.
0001-5970,
105
, pp.
33
47
.
13.
Dascalu
,
C.
, and
Maugin
,
G. A.
, 1995, “
On the Dynamic Fracture of Piezoelectric Materials
,”
Q. J. Mech. Appl. Math.
0033-5614,
48
, pp.
237
254
.
14.
Pak
,
Y. E.
, and
Tobin
,
A.
, 1993, “
On Electric Field Effects in Fracture of Piezoelectric Materials
,” Mechanics of Electromagnetic Materials and Structures,
AMD (Am. Soc. Mech. Eng.)
0160-8835
161
, pp.
51
62
.
15.
Tobin
,
A.
, and
Pak
,
Y. E.
, 1993, “
Effects of Electric Fields on Fracture Behavior of PZT Ceramics
,”
Smart Materials
, Vol.
1916
,
V. K.
Varadan
, ed.,
SPIE
,
Bellingham, WA
, pp.
78
86
.
16.
Cao
,
H. C.
, and
Evans
,
A. G.
, 1994, “
Electric-Field-Induced Fatigue Crack Growth in Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
77
, pp.
1783
1786
.
17.
Lynch
,
C. S.
,
Yang
,
W.
,
Collier
,
L.
,
Suo
,
Z.
, and
McMeeking
,
R. M.
, 1995, “
Electric Field Induced Cracking in Ferroelectric Ceramics
,”
Ferroelectrics
,
166
, pp.
11
30
. 0015-0193
18.
Park
,
S. B.
, and
Sun
,
C. T.
, 1993, “
Effect of Electric Field on Fracture of Piezoelectric Ceramics
,”
Int. J. Fract.
0376-9429,
70
, pp.
203
216
.
19.
Park
,
S. B.
, and
Sun
,
C. T.
, 1995, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
78
, pp.
1475
1480
.
20.
Gao
,
H.
,
Zhang
,
T. -Y.
, and
Tong
,
P.
, 1997, “
Local and Global Energy Release Rate for an Electrically Yielded Crack in a Piezoelectric Ceramic
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
491
510
.
21.
Fulton
,
C. C.
, and
Gao
,
H.
, 2001, “
Effect of Local Polarization Switching on Piezoelectric Fracture
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
927
952
.
22.
Li
,
S.
, 2003, “
On Global Energy Release Rate of a Permeable Crack in a Piezoelectric Ceramic
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
246
252
.
23.
Zhang
,
T. Y.
,
Zhao
,
M. H.
, and
Gao
,
C. F.
, 2005, “
The Strip Dielectric Breakdown Model
,”
Int. J. Fract.
,
132
, pp.
311
327
. 0376-9429
24.
McMeeking
,
R. M.
, 2001, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
0376-9429,
108
, pp.
25
41
.
25.
McMeeking
,
R. M.
, 2004, “
The Energy Release Rate for a Griffith Crack in a Piezoelectric Material
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1149
1163
.
26.
Lin
,
C. B.
, and
Yeh
,
C. S.
, 2002, “
The Magnetoelastic Problem of a Crack in a Soft Ferromagnetic Solid
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
1
17
.
27.
Liang
,
W.
,
Fang
,
D.
,
Shen
,
Y.
, and
Soh
,
A. K.
, 2002, “
Nonlinear Magnetoelastic Coupling Effects in a Soft Ferromagnetic Material With a Crack
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3997
4011
.
28.
Gao
,
C. -F.
,
Kessler
,
H.
, and
Balke
,
H.
, 2003, “
Crack Problems in Magnetoelectroelastic Solids. Part I: Exact Solution of a Crack
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
969
981
.
29.
Gao
,
C. -F.
,
Tong
,
P.
, and
Zhang
,
T. -Y.
, 2004, “
Fracture Mechanics for a Mode III Crack in a Magnetoelectroelastic Solid
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
6613
6629
.
30.
Wang
,
B. L.
, and
Mai
,
Y. -W.
, 2003, “
Cracking of Electromagnetic Elastic Solids
,”
Key Eng. Mater.
,
251–252
, pp.
303
312
. 1013-9826
31.
Wang
,
B. L.
, and
Mai
,
Y. -W.
, 2004, “
Fracture of Piezoelectromagnetic Materials
,”
Mech. Res. Commun.
0093-6413,
31
, pp.
65
73
.
32.
Wang
,
B. L.
, and
Mai
,
Y. -W.
, 2007, “
Applicability of the Crack-Face Electromagnetic Boundary Conditions for Fracture of Magnetoelectroelastic Materials
,”
Int. J. Solids Struct.
,
44
, pp.
387
398
. 0020-7683
33.
Gao
,
C. -F.
,
Mai
,
Y. -W.
, and
Wang
,
B. -L.
, 2008, “
Effects of Magnetic Fields on Cracks in a Soft Ferromagnetic Material
,”
Eng. Fract. Mech.
,
75
, pp.
4863
4875
. 0013-7944
34.
Eshelby
,
J. D.
, 1951, “
The Force on an Elastic Singularity
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
244
, pp.
87
112
.
35.
Eshelby
,
J. D.
, 1970, “
Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics
,”
Inelastic Behavior of Solids
,
M. F.
Kanninen
, ed.,
McGraw-Hill
,
New York
, pp.
77
114
.
36.
Eshelby
,
J. D.
, 1975, “
The Elastic Energy-Momentum Tensor
,”
J. Elast.
0374-3535,
5
, pp.
321
335
.
37.
Trueddell
,
C.
, and
Noll
,
W.
, 2004,
The Non-Linear Field Theories of Mechanics
, 3rd ed.,
S. S.
Antman
, ed.,
Springer-Verlag
,
Berlin
.
38.
Fung
,
Y. C.
, and
Tong
,
P.
, 2001,
Classical and Computational Solid Mechanics
,
World Scientific
,
Singapore
.
39.
Eringen
,
A. C.
, 1980,
Mechanics of Continua
, 2nd ed.,
Robert E. Krieger Publishing Company, Inc.
,
Malabar, FL
.
40.
Maugin
,
G. A.
, 1988,
Continuum Mechanics of Electromagnetic Solids
,
North-Holland
,
Amsterdam
.
41.
Maugin
,
G. A.
, 1992,
The Thermomechanics of Plasticity and Fracture
,
Cambridge University Press
,
Cambridge, UK
.
42.
Dorfmann
,
A.
, and
Ogden
,
R. W.
, 2004, “
Nonlinear Magnetoelastic Deformations
,”
Q. J. Mech. Appl. Math.
0033-5614,
57
, pp.
599
622
.
43.
Chen
,
X.
, 2007, “
Coupled Hygro-Thermo-Viscoelastic Fracture Theory
,”
Int. J. Fract.
,
148
, pp.
47
55
. 0376-9429
44.
Chen
,
X.
, 2009, “
Crack Driving Force and Energy-Momentum Tensor in Electroelastodynamic Fracture
,”
J. Mech. Phys. Solids
,
57
, pp.
1
9
. 0022-5096
45.
Chen
,
X.
, 2008, “
Nonlinear Field Theory of Fracture Mechanics for Piezoelectric and Ferroelectric Materials
, unpublished.
46.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
, 1985,
Advanced Fracture Mechanics
,
Oxford University Press
,
New York
.
47.
Christensen
,
R. M.
, 1982,
Theory of Viscoelasticity—An Introduction
, 2nd ed.,
Academic
,
New York
.
48.
Freund
,
L. B.
, 1998,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
49.
Schapery
,
R. A.
, 1975, “
A Theory of Crack-Initiation and Growth in Viscoelastic Media
,”
Int. J. Fract.
0376-9429,
11
, pp.
141
159
.
50.
Cotterell
,
B.
, and
Reddel
,
J. K.
, 1977, “
The Essential Work of Plane Stress Ductile Fracture
,”
Int. J. Fract.
,
12
, pp.
267
277
. 0376-9429
51.
Mai
,
Y. -W.
, and
Cotterell
,
B.
, 1986, “
On the Essential Work of Ductile Fracture in Polymers
,”
Int. J. Fract.
0376-9429,
32
, pp.
105
125
.
52.
Mai
,
Y. -W.
,
Wong
,
S. -C.
, and
Chen
,
X. -H.
, 2000, “
Application of Fracture Mechanics for Characterization of Toughness of Polymer Blends
,”
Polymer Blends
,
D. R.
Paul
and
C. B.
Bucknall
, eds.,
Wiley
,
New York
, pp.
17
58
.
53.
Broberg
,
K. B.
, 1971, “
Crack Growth Criteria and Non-Linear Fracture Mechanics
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
407
418
.
54.
Broberg
,
K. B.
, 1975, “
On Stable Crack Growth
,”
J. Mech. Phys. Solids
0022-5096,
23
, pp.
215
237
.
You do not currently have access to this content.