Since their development, shape memory polymers (SMPs) have been of increasing interest in active materials and structures design. In particular, there has been a growing interest in SMPs for use in adaptive structures because of their ability to switch between low and high stiffness moduli in a relatively short temperature range. However, because a thermal stimulus is inappropriate for many morphing applications, a new light activated shape memory polymer (LASMP) is under development. Among the challenges associated with the development of a new class of material is establishing viable characterization methods. For the case of LASMP both the sample response to light stimulus and the stimulus itself vary in both space and time. Typical laser light is both periodic and Gaussian in nature. Furthermore, LASMP response to the light stimulus is dependent on the intensity of the incident light and the time varying through the thickness penetration of the light as the transition progresses. Therefore both in-plane and through-thickness stimulation of the LASMP are nonuniform and time dependent. Thus, the development of a standardized method that accommodates spatial and temporal variations associated with mechanical property transition under a light stimulus is required. First generation thick film formulations are found to have a transition time on the order of 60 min. The characterization method proposed addresses optical stimulus irregularities. A chemical kinetic model is also presented capable of predicting the through-thickness evolution of Young’s modulus of the polymer. This work discusses in situ characterization strategies currently being implemented as well as the current and projected performance of LASMPs.

1.
Lendlein
,
A.
, and
Langer
,
R.
, 2002, “
Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications
,”
Science
0036-8075,
296
, pp.
1673
1676
.
2.
Wache
,
H. M.
,
Tartakowska
,
D. J.
,
Hentrich
,
A.
, and
Wagner
,
M. H.
, 2003, “
Development of a Polymer Stent With Shape Memory Effect as a Drug Delivery System
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
14
, pp.
109
112
.
3.
Small
,
W.
, IV
,
Buckley
,
P. R.
,
Wilson
,
T. S.
,
Benett
,
W. J.
,
Hartman
,
J.
,
Saloner
,
D.
, and
Maitland
,
D. J.
2007, “
Shape Memory Polymer Stent With Expandable Foam: A New Concept for Endovascular Embolization of Fusiform Aneurysms
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
6
), pp.
1157
1160
.
4.
Pastor
,
C.
,
Sanders
,
B.
,
Joo
,
J. J.
, and
McCarty
,
R.
, 2006, “
Kinematically Designed Flexible Skins for Morphing Aircraft
,” ASME Paper No. IMECE2006-69674.
5.
Reed
,
J. L.
, Jr.
,
Hemmelgarn
,
C. D.
,
Pelley
,
B. M.
, and
Havens
,
E.
, 2005, “
Adaptive Wing Structures
,”
Proc. SPIE
,
5762
, pp.
132
142
. 0002-7820
6.
Merx
,
K.
, 2007,
GM’s Grand Experiment: Miracle Materials
,
Detroit Free Press
,
Detroit, MI
.
7.
Lendlein
,
A.
, and
Kelch
,
S.
, 2002, “
Shape-Memory Effect
,”
Angew. Chem., Int. Ed.
,
41
, pp.
2036
2057
. 1433-7851
8.
Lee
,
B. S.
,
Chun
,
B. C.
,
Chung
,
Y.-C.
,
Sul
,
K.
, II
, and
Cho
,
J. W.
, 2001, “
Structure and Thermomechanical Properties of Polyurethane Block Copolymers With Shape Memory Effect
,”
Macromolecules
0024-9297,
34
, pp.
6431
6437
.
9.
Gall
,
K.
,
Dunn
,
M. L.
,
Liu
,
Y.
,
Stefanic
,
G.
, and
Balzar
,
D.
, 2004, “
Internal Stress Storage in Shape Memory Polymer Nanocomposites
,”
Appl. Phys. Lett.
0003-6951,
85
(
2
), pp.
290
292
.
10.
Chernous
,
D. A.
,
Shil’ko
,
S. V.
, and
Pleskachevskii
,
Y. M.
, 2004, “
Description of the Shape Memory Effect of Radiation-Modified Polymers Under Thermomechanical Action
,”
J. Eng. Phys. Thermophys.
1062-0125,
77
(
1
), pp.
6
10
.
11.
Yang
,
B.
,
Huang
,
W.
,
Li
,
C.
,
Lee
,
C. M.
, and
Lee
,
L.
, 2004, “
On the Effects of Moisture in a Polyurethane Shape Memory Polymer
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
191
195
.
12.
Yang
,
B.
,
Huang
,
W. M.
,
Li
,
C.
, and
Li
,
L.
, 2006, “
Effects of Moisture on the Thermomechanical Properties of a Polyurethane Shape Memory Polymer
,”
Polymer
0032-3861,
47
, pp.
1348
1356
.
13.
Huang
,
W. M.
,
Yang
,
B.
,
An
,
L.
,
Li
,
C.
, and
Chan
,
Y. S.
, 2005, “
Water-Driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
114105
.
14.
Beblo
,
R.
, and
Weiland
,
L. M.
, 2006, “
Polymer Chain Alignment in Shape Memory Polymer
,” ASME Paper No. IMECE2006-13703.
15.
Poilane
,
C.
,
Delobelle
,
P.
,
Lexcellent
,
C.
,
Hayashi
,
S.
, and
Tobushi
,
H.
, 2000, “
Analysis of the Mechanical Behavior of Shape Memory Polymer Membranes by Nanoindentation, Bulging and Point Membrane Deflection Tests
,”
Thin Solid Films
0040-6090,
379
, pp.
156
165
.
16.
Tobushi
,
H.
,
Hara
,
H.
,
Yamada
,
E.
, and
Hayashi
,
S.
, 1996, “
Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series
,”
Smart Mater. Struct.
,
5
, pp.
483
491
. 0964-1726
17.
Tobushi
,
H.
,
Matsui
,
R.
,
Takada
,
T.
, and
Hayashi
,
S.
, 2004, “
Shape Fixity and Shape Recovery of Shape Memory Polymer and Their Applications
,”
Proceedings of the XXI ICTAM
, Warsaw, Poland, Aug. 15–21.
18.
Tobushi
,
H.
,
Matsui
,
R.
,
Hayashi
,
S.
, and
Shimada
,
D.
, 2004, “
The Influence of Shape-Holding Conditions on Shape Recovery of Polyurethane-Shape Memory Polymer Foams
,”
Smart Mater. Struct.
,
13
, pp.
881
887
. 0964-1726
19.
Wei
,
Z. G.
,
Sandstrom
,
R.
, and
Miyazaki
,
S.
, 1998, “
Shape-Memory Materials and Hybrid Composites for Smart Systems
,”
J. Mater. Sci.
0022-2461,
33
, pp.
3743
3762
.
20.
Schmidt
,
A. M.
, 2006, “
Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles
,”
Macromol. Rapid Commun.
1022-1336,
27
, pp.
1168
1172
.
21.
Snyder
,
E. A.
, and
Tong
,
T. H.
, 2005, “
Towards Novel Light-Activated Shape Memory Polymer: Thermomechanical Properties of Photo-Responsive Polymers
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
872
, pp.
353
358
.
22.
Havens
,
E.
,
Snyder
,
E. A.
, and
Tong
,
T. H.
, 2005, “
Light-Activated Shape Memory Polymers and Associated Applications
,”
Proc. SPIE
,
5762
, pp.
48
55
. 0002-7820
23.
Tong
,
T.
, and
Snyder
,
E.
, “
Light Activated Shape Memory Co-Polymers
,”
World Intellectual Property Organization
, Publication No. WO/2007/001407.
24.
Lendlein
,
A.
,
Jiang
,
H.
,
Jünger
,
O.
, and
Langer
,
R.
, 2005, “
Light-Induced Shape Memory Polymers
,”
Nature (London)
0028-0836,
434
, pp.
879
882
.
25.
Lee
,
B. S.
,
Chun
,
B. C.
,
Chung
,
Y.-C.
,
Sul
,
K. I
, and
Cho
,
J. W.
, 2001, “
Structure and Thermomechanical Properties of Polyurethane Block Copolymers With Shape Memory Effect
,”
Macromolecules
0024-9297,
34
, pp.
6431
6437
.
26.
Racz
,
L. M.
,
Li
,
L.
, and
Abedian
,
B.
, 1998, “
Cure Kinetics of Light-Activated Polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
36
, pp.
2887
2894
.
27.
Finkelmann
,
H.
,
Nishikawa
,
E.
,
Pereira
,
G. G.
, and
Warner
,
M.
, 2001, “
A New Opto-Mechanical Effect in Solids
,”
Phys. Rev. Lett.
0031-9007,
87
(
1
), p.
015501
.
28.
Ikeda
,
T.
,
Nakano
,
M.
,
Yu
,
Y.
,
Tsutsumi
,
O.
, and
Kanazawa
,
A.
, 2003, “
Anisotropic Bending and Unbending Behavior of Azobenzene Liquid-Crystalline Gels by Light Exposure
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
15
(
3
), pp.
201
205
.
29.
Yu
,
Y.
,
Nakano
,
M.
, and
Ikeda
,
T.
, 2003, “
Directed Bending of a Polymer Film by Light
,”
Nature (London)
0028-0836,
425
, p.
145
.
30.
Li
,
M.-H.
,
Keller
,
P.
,
Li
,
B.
,
Wang
,
X.
, and
Brunet
,
M.
, 2003, “
Light-Driven Side-on Nematic Elastomer
,”
Adv. Mater. (Weinheim, Ger.)
,
15
(
7–8
), pp.
569
572
. 0935-9648
31.
Personal correspondence with Tat Tong of Cornerstone Research Group, Dayton, OH.
32.
Figger
,
H.
,
Meschede
,
D.
, and
Zimmermann
,
C.
, 2002,
Laser Physics at the Limits
,
Springer-Verlag
,
Berlin, Germany
.
33.
Slaughter
,
W. S.
, 2002,
The Linearized Theory of Elasticity
,
Birkhauser
,
Boston
, pp.
226
232
.
34.
Hodgkinson
,
J. M.
, 2000,
Mechanical Testing of Advanced Fibre Composites
,
Woodhead
,
Cambridge, UK
, pp.
15
16
.
35.
Akhmanov
,
S. A.
, and
Nikitin
,
S. Y.
, 1997,
Physical Optics
,
Oxford University Press
,
New York
, pp.
93
100
.
36.
Pannetier
,
G.
, and
Souchay
,
P.
, 1967,
Chemical Kinetics
,
Elsevier
,
New York
, pp.
133
137
.
You do not currently have access to this content.