This study proposes an analytical model for vibrations in a cracked rectangular plate as one of the results from a program of research on vibration based damage detection in aircraft panel structures. This particular work considers an isotropic plate, typically made of aluminum, and containing a crack in the form of a continuous line with its center located at the center of the plate and parallel to one edge of the plate. The plate is subjected to a point load on its surface for three different possible boundary conditions, and one examined in detail. Galerkin’s method is applied to reformulate the governing equation of the cracked plate into time dependent modal coordinates. Nonlinearity is introduced by appropriate formulations introduced by applying Berger’s method. An approximate solution technique—the method of multiple scales—is applied to solve the nonlinear equation of the cracked plate. The results are presented in terms of natural frequency versus crack length and plate thickness, and the nonlinear amplitude response of the plate is calculated for one set of boundary conditions and three different load locations, over a practical range of external excitation frequencies.

1.
Khadem
,
S. E.
, and
Rezaee
,
M.
, 2000, “
Introduction of Modified Comparison Functions for Vibration Analysis of a Rectangular Cracked Plate
,”
J. Sound Vib.
0022-460X,
236
(
2
), pp.
245
258
.
2.
Okamura
,
H.
,
Liu
,
H. W.
,
Chu
,
C.
, and
Liebowitz
,
H.
, 1969, “
A Cracked Column Under Compression
,”
Eng. Fract. Mech.
0013-7944,
1
, pp.
547
563
.
3.
Khadem
,
S. E.
, and
Rezaee
,
M.
, 2000, “
An Analytical Approach for Obtaining the Location and Depth of an All-Over Part-Through Crack On Externally In-Plane Loaded Rectangular Plate Using Vibration Analysis
,”
J. Sound Vib.
0022-460X,
230
(
2
), pp.
291
308
.
4.
Krawczuk
,
M.
,
Palacz
,
M.
, and
Ostachowicz
,
W.
, 2004, “
Wave Propagation in Plate Structures for Crack Detection
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
991
1004
.
5.
Wu
,
G. Y.
, and
Shih
,
Y. S.
, 2005, “
Dynamic Instability of Rectangular Plate With an Edge Crack
,”
Comput. Struct.
,
84
, pp.
1
10
. 0045-7949
6.
Irwin
,
G. R.
, 1962, “
Crack Extension Force for a Part Through Crack in a Plate
,”
ASME J. Appl. Mech.
,
29
, pp.
651
654
. 0021-8936
7.
Rice
,
J. R.
, and
Levy
,
N.
, 1972, “
The Part Through Surface Crack in an Elastic Plate
,”
ASME J. Appl. Mech.
,
3
, pp.
185
194
. 0021-8936
8.
Israr
,
A.
,
Cartmell
,
M. P.
,
Krawczuk
,
M.
,
Ostachowicz
,
W. M.
,
Manoach
,
E.
,
Trendafilova
,
I.
,
Shiskina
,
E. V.
, and
Palacz
,
M.
, 2006, “
On Approximate Analytical Solutions for Vibrations in Cracked Plates
,”
Modern Practice in Stress and Vibration Analysis VI
, Vols.
5–6
,
P.
Keogh
, ed.,
Trans Tech
,
Switzerland
, pp.
315
322
.
9.
Leissa
,
A.
, 1993, “
Vibration of Plates
,”
National Acoustical and Space Administration
, Report No. NASA SP-160.
10.
Szilard
,
R.
, 2004,
Theories and Applications of Plate Analysis
,
Wiley
,
New York
, p.
89
.
11.
Timoshenko
,
S.
, 1940,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
12.
Yagiz
,
N.
, and
Sakman
,
L. E.
, 2006, “
Vibrations of a Rectangular Bridge as an Isotropic Plate Under a Traveling Full Vehicle Model
,”
J. Vib. Control
1077-5463,
12
(
1
), pp.
83
98
.
13.
Au
,
F. T. K.
, and
Wang
,
M. F.
, 2005, “
Sound Radiation From Forced Vibration of Rectangular Orthotropic Plates Under Moving Loads
,”
J. Sound Vib.
,
281
, pp.
1057
1075
. 0022-460X
14.
Fan
,
Z.
, 2001, “
Transient Vibration and Sound Radiation of a Rectangular Plate With Viscoelastic Boundary Supports
,”
Int. J. Numer. Methods Eng.
,
51
, pp.
619
630
. 0029-5981
15.
Mukhopadhyay
,
M.
, 1979, “
A General Solution for Rectangular Plate Bending
,”
Forsch. Ingenieurwes.
0015-7899,
45
(
4
), pp.
111
118
.
16.
Young
,
D.
, 1950, “
Vibration of Rectangular Plates by the Ritz Method
,”
ASME J. Appl. Mech.
,
17
(
4
), pp.
448
453
. 0021-8936
17.
Stanišić
,
M. M.
, 1957, “
An Approximate Method Applied to the Solution of the Problem of Vibrating Rectangular Plates
,”
J. Aeronaut. Sci.
,
24
, pp.
159
160
. 0095-9812
18.
Nagaraja
,
J. V.
, and
Rao
,
S. S.
, 1953, “
Vibration of Rectangular Plates
,”
J. Aeronaut. Sci.
,
20
, pp.
855
856
. 0095-9812
19.
Berthelot
,
J. M.
, 1999,
Dynamics of Composite Materials and Structures
,
Institute for Advanced Materials and Mechanics
,
Springer
,
New York
.
20.
Iwato
,
S.
, 1951, “
Approximate Calculation for the Frequency of Natural Vibration of a Thin Rectangular Plate the Two Adjacent Edges of Which are Clamped While the Other Two Edges are Freely Supported
,”
Trans. Jpn. Soc. Mech. Eng.
0375-9466,
17
(
57
), pp.
30
33
(in Japanese).
21.
Berger
,
H. M.
, 1955, “
A New Approach to the Analysis of Large Deflections of Plates
,”
ASME J. Appl. Mech.
,
22
, pp.
465
472
. 0021-8936
22.
Wah
,
T.
, 1964, “
The Normal Modes of Vibration of Certain Nonlinear Continuous Systems
,”
ASME J. Appl. Mech.
,
31
, pp.
139
140
. 0021-8936
23.
Ramachandran
,
J.
, and
Reddy
,
D. V.
, 1972, “
Nonlinear Vibrations of Rectangular Plates With Cut-Outs
,”
AIAA J.
,
10
, pp.
1709
1710
. 0001-1452
24.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
Germany
.
25.
Kevorkian
,
J.
, and
Cole
,
J. D.
, 1981,
Perturbation Methods in Applied Mathematics
, Vol.
34
,
Springer-Verlag
,
Berlin
.
26.
Murdock
,
J. A.
, 1999,
Perturbations Theory and Methods
,
SIAM
,
Philadelphia
.
27.
Cartmell
,
M. P.
,
Ziegler
,
S. W.
,
Khanin
,
R.
, and
Forehand
,
D. I. M.
, 2003, “
Multiple Scales Analysis of the Dynamics of Weakly Nonlinear Mechanical Systems
,”
Appl. Mech. Rev.
0003-6900,
56
(
5
), pp.
455
492
.
You do not currently have access to this content.