This article provides a materials selection methodology applicable to lightweight actively cooled panels, particularly suitable for the most demanding aerospace applications. The key ingredient is the development of a code that can be used to establish the capabilities and deficiencies of existing panel designs and direct the development of advanced materials. The code is illustrated for a fuel-cooled combustor liner of a hypersonic vehicle, optimized for minimum weight subject to four primary design constraints (on stress, temperatures, and pressure drop). Failure maps are presented for a number of candidate high-temperature metallic alloys and ceramic composites, allowing direct comparison of their thermostructural performance. Results for a Mach 7 vehicle under steady-state flight conditions and stoichiometric fuel combustion reveal that, while C–SiC satisfies the design requirements at minimum weight, the Nb alloy Cb752 and the Ni alloy Inconel X-750 are also viable candidates, albeit at about twice the weight. Under the most severe heat loads (arising from heat spikes in the combustor), only Cb752 remains viable. This result, combined with robustness benefits and fabrication facility, emphasizes the potential of this alloy for scramjets.

1.
Steeves
,
C. A.
,
He
,
M. Y.
,
Valdevit
,
L.
,
Kasen
,
S. D.
,
Wadley
,
H. N. G.
, and
Evans
,
A. G.
, 2008, “
Feasibility of Metallic Structural Heat Pipes as Sharp Leading Edges for Hypersonic Vehicles
,”
ASME J. Appl. Mech.
0021-8936, in press.
2.
Curran
,
E. T.
, and
Murthy
,
S. N. B.
, 2000,
Scramjet Propulsion
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
3.
Heiser
,
W. H.
, and
Pratt
,
D. T.
, 1994,
Hypersonic Airbreathing Propulsion
,
AIAA
,
Washington, DC
.
4.
Bertin
,
J. J.
, 1994,
Hypersonic Aerothermodynamics
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
5.
Buchmann
,
O. A.
, 1979, “
Thermal-Structural Design Study of an Airframe-Integrated Scramjet
,” Technical Report No. NASA 3141.
6.
Rakow
,
J. F.
, and
Waas
,
A. M.
, 2005, “
Thermal Buckling of Metal Foam Sandwich Panels for Convective Thermal Protection Systems
,”
J. Spacecr. Rockets
0022-4650,
42
(
5
), pp.
832
844
.
7.
Rakow
,
J. F.
, and
Waas
,
A. M.
, 2005, “
Thermomechanical Response of Actively Cooled Metal Foam Sandwich Panels for Thermal Protection Systems
,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference,
AIAA
,
Austin, TX
.
8.
Song
,
K. D.
,
Choi
,
S. H.
, and
Scotti
,
S. J.
, 2006, “
Transpiration Cooling Experiment for Scramjet Engine Combustion Chamber by High Heat Fluxes
,”
J. Propul. Power
0748-4658,
22
(
1
), pp.
96
102
.
9.
Scotti
,
S. J.
,
Martin
,
C. J.
, and
Lucas
,
S. H.
, 1988, “
Active Cooling Design for Scramjet Engines Using Optimization Methods
,” Technical Report No. NASA 100581.
10.
Youn
,
B.
, and
Mills
,
A. F.
, 1995, “
Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft
,”
J. Thermophys. Heat Transfer
0887-8722,
9
(
1
), pp.
136
143
.
11.
Flieder
,
W. C.
,
Richard
,
C. E.
,
Buchmann
,
O. A.
, and
Walters
,
F. M.
, 1971, “
An Analytical Study of Hydrogen Cooled Panels for Application to Hypersonic Aircraft
,” Technical Report No. NASA CR-1650.
12.
Walters
,
F. M.
, and
Buchmann
,
O. A.
, 1971, “
Heat Transfer and Fluid Flow Analysis of Hydrogen-Cooled Panels and Manifold Systems
,” Technical Report No. NASA CR-66925.
13.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
, 2001, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
0079-6425,
46
(
5
), pp.
505
553
.
14.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass-Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
(
2
), pp.
359
368
.
15.
Bree
,
J.
, 1969, “
Incremental Growth Due to Creep and Plastic Yielding of Thin Tubes Subjected to Internal Pressure and Cyclic Thermal Stresses
,”
J. Strain Anal.
0022-4758,
3
(
2
), pp.
122
127
.
16.
Bree
,
J.
, 1989, “
Plastic-Deformation of a Closed Tube Due to Interaction of Pressure Stresses and Cyclic Thermal-Stresses
,”
Int. J. Mech. Sci.
0020-7403,
31
(
11–12
), pp.
865
892
.
17.
Boley
,
B. A.
, and
Weiner
,
J. H.
, 1960,
Theory of Thermal Stresses
,
Wiley
,
New York
.
18.
Rathbun
,
H. J.
,
Zok
,
F. W.
, and
Evans
,
A. G.
, 2005, “
Strength Optimization of Metallic Sandwich Panels Subject to Bending
,”
Int. J. Solids Struct.
0020-7683,
42
(
26
), pp.
6643
6661
.
19.
Valdevit
,
L.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2004, “
Structurally Optimized Sandwich Panels With Prismatic Cores
,”
Int. J. Solids Struct.
0020-7683,
41
(
18–19
), pp.
5105
5124
.
20.
Valdevit
,
L.
,
Wei
,
Z.
,
Mercer
,
C.
,
Zok
,
F. W.
, and
Evans
,
A. G.
, 2006, “
Structural Performance of Near-Optimal Sandwich Panels With Corrugated Cores
,”
Int. J. Solids Struct.
0020-7683,
43
(
16
), pp.
4888
4905
.
21.
Wei
,
Z.
,
Zok
,
F. W.
, and
Evans
,
A. G.
, 2006, “
Design of Sandwich Panels With Prismatic Cores
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
2
), pp.
186
192
.
22.
Wicks
,
N.
, and
Hutchinson
,
J. W.
, 2001, “
Optimal Truss Plates
,”
Int. J. Solids Struct.
0020-7683,
38
(
30–31
), pp.
5165
5183
.
23.
Wicks
,
N.
, and
Hutchinson
,
J. W.
, 2004, “
Performance of Sandwich Plates With Truss Cores
,”
Mech. Mater.
0167-6636,
36
(
8
), pp.
739
751
.
24.
Zok
,
F. W.
,
Rathbun
,
H.
,
He
,
M.
,
Ferri
,
E.
,
Mercer
,
C.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2005, “
Structural Performance of Metallic Sandwich Panels With Square Honeycomb Cores
,”
Philos. Mag.
1478-6435,
85
(
26–27
), pp.
3207
3234
.
25.
Zok
,
F. W.
,
Rathbun
,
H. J.
,
Wei
,
Z.
, and
Evans
,
A. G.
, 2003, “
Design of Metallic Textile Core Sandwich Panels
,”
Int. J. Solids Struct.
0020-7683,
40
(
21
), pp.
5707
5722
.
26.
Zok
,
F. W.
,
Waltner
,
S. A.
,
Wei
,
Z.
,
Rathbun
,
H. J.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2004, “
A Protocol for Characterizing the Structural Performance of Metallic Sandwich Panels: Application to Pyramidal Truss Cores
,”
Int. J. Solids Struct.
0020-7683,
41
(
22–23
), pp.
6249
6271
.
27.
National Research Council (US) Committee on the National Aerospace Initiative, 2004,
Evaluation of the National Aerospace Initiative
,
National Academy
,
Washington, DC
.
28.
Novak
,
M. D.
, and
Levi
,
C. G.
, 2007, “
Oxidation and Volatilization of Silicide Coatings for Refractory Niobium Alloys
,” ASME IMECE,
Seattle, WA
.
29.
Marshall
,
D. B.
, personal communication.
30.
Lu
,
T. J.
,
Valdevit
,
L.
, and
Evans
,
A. G.
, 2005, “
Active Cooling by Metallic Sandwich Structures With Periodic Cores
,”
Prog. Mater. Sci.
0079-6425,
50
(
7
), pp.
789
815
.
31.
Valdevit
,
L.
,
Pantano
,
A.
,
Stone
,
H. A.
, and
Evans
,
A. G.
, 2006, “
Optimal Active Cooling Performance of Metallic Sandwich Panels With Prismatic Cores
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
21–22
), pp.
3819
3830
.
32.
Bejan
,
A.
, 2004,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
33.
Moody
,
L. F.
, 1944, “
Friction Factors for Pipe Flow
,”
Trans. ASME
0097-6822,
66
, pp.
671
684
.
34.
Wang
,
M.
, and
Laird
,
C.
, 1996, “
Characterization of Microstructure and Tensile Behavior of a Cross-Woven C–SiC Composite
,”
Acta Mater.
1359-6454,
44
(
4
), pp.
1371
1387
.
35.
Wang
,
M. D.
, and
Laird
,
C.
, 1996, “
Damage and Fracture of a Cross Woven C∕SiC Composite Subject to Compression Loading
,”
J. Mater. Sci.
0022-2461,
31
(
8
), pp.
2065
2069
.
You do not currently have access to this content.