The cytoskeleton provides the mechanical scaffold and maintains the integrity of cells. It is usually believed that one type of cytoskeleton biopolymer, microtubules, bears compressive force. In vitro experiments found that isolated microtubules may form an Euler buckling pattern with a long-wavelength for very small compressive force. This, however, does not agree with in vivo experiments where microtubules buckle with a short-wavelength. In order to understand the structural role of microtubules in vivo, we developed mechanics models that study microtubule buckling supported by cytoplasm. The microtubule is modeled as a linearly elastic cylindrical tube while the cytoplasm is characterized by different types of materials, namely, viscous, elastic, or viscoelastic. The dynamic evolution equations, the fastest growth rate, the critical wavelength, and compressive force, as well as equilibrium buckling configurations are obtained. The ability for a cell to sustain compressive force does not solely rely on microtubules but is also supported by the elasticity of cytoplasm. With the support of the cytoplasm, an individual microtubule can sustain a compressive force on the order of 100pN. The relatively stiff microtubules and compliant cytoplasm are combined to provide a scaffold for compressive force.

1.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
, 2003,
Molecular Biology of the Cell
,
Garland Science
,
New York
.
2.
Howard
,
J.
, and
Hyman
,
A. A.
, 2003, “
Dynamics and Mechanics of the Microtubule Plus End
,”
Nature (London)
0028-0836,
422
, pp.
753
758
.
3.
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
Cell and Molecular Mechanics of Biological Materials
,”
Nat. Mater.
1476-1122,
2
, pp.
715
725
.
4.
Karsenti
,
E.
,
Nedelec
,
F.
, and
Surrey
,
T.
, 2006, “
Modelling Microtubule Patterns
,”
Nat. Cell Biol.
1465-7392,
8
, pp.
1204
1211
.
5.
Kolodney
,
M. S.
, and
Wysolmerski
,
R. B.
, 1992, “
Isometric Contraction by Fibroblasts and Endothelial-Cells in Tissue-Culture-A Quantitative Study
,”
J. Cell Biol.
0021-9525,
117
, pp.
73
82
.
6.
WatermanStorer
,
C. M.
, and
Salmon
,
E. D.
, 1997, “
Actomyosin-Based Retrograde Flow of Microtubules in Migrating Epithelial Cells Influences Dynamic Instability and is Associated With Microtubule Breakage and Treadmilling
,”
Mol. Biol. Cell
1059-1524,
8
, p.
17
.
7.
Putnam
,
A. J.
,
Cunningham
,
J. J.
,
Dennis
,
R. G.
,
Linderman
,
J. J.
, and
Mooney
,
D. J.
, 1998, “
Microtubule Assembly is Regulated by Externally Applied Strain in Cultured Smooth Muscle Cells
,”
J. Cell. Sci.
0021-9533,
111
, pp.
3379
3387
.
8.
Wang
,
N.
,
Naruse
,
K.
,
Stamenovic
,
D.
,
Fredberg
,
J. J.
,
Mijailovich
,
S. M.
,
Toric-Norrelykke
,
I. M.
,
Polte
,
T.
,
Mannix
,
R.
, and
Ingber
,
D. E.
, 2001, “
Mechanical Behavior in Living Cells Consistent With the Tensegrity Model
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
, pp.
7765
7770
.
9.
Stamenovic
,
D.
,
Mijailovich
,
S. M.
,
Tolic-Norrelykke
,
I. M.
,
Chen
,
J. X.
, and
Wang
,
N.
, 2002, “
Cell Prestress. II. Contribution of Microtubules
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
282
, pp.
C617
C624
.
10.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
, 1993, “
Flexural Rigidity of Microtubules and Actin-Filaments Measured From Thermal Fluctuations in Shape
,”
J. Cell Biol.
0021-9525,
120
, pp.
923
934
.
11.
Dogterom
,
M.
, and
Yurke
,
B.
, 1997, “
Measurement of the Force-Velocity Relation for Growing Microtubules
,”
Science
0036-8075,
278
, pp.
856
860
.
12.
Gittes
,
F.
,
Meyhofer
,
E.
,
Baek
,
S.
, and
Howard
,
J.
, 1996, “
Directional Loading of the Kinesin Motor Molecule as it Buckles a Microtubule
,”
Biophys. J.
0006-3495,
70
, pp.
418
429
.
13.
Brangwynne
,
C. P.
,
MacKintosh
,
F. C.
,
Kumar
,
S.
,
Geisse
,
N. A.
,
Talbot
,
J.
,
Mahadevan
,
L.
,
Parker
,
K. K.
,
Ingber
,
D. E.
, and
Weitz
,
D. A.
, 2006, “
Microtubules can Bear Enhanced Compressive Loads in Living Cells Because of Lateral Reinforcement
,”
J. Cell Biol.
0021-9525,
173
, pp.
733
741
.
14.
Timoshenko
,
S.
, and
Gere
,
J.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
15.
Huang
,
Z. Y.
,
Hong
,
W.
, and
Suo
,
Z.
, 2005, “
Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2101
2118
.
16.
Chen
,
X.
, and
Hutchinson
,
J. W.
, 2004, “
Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
597
603
.
17.
Berk
,
A.
,
Zipursky
,
S. L.
,
Matsudaira
,
P.
,
David
,
B.
, and
Darnell
,
J.
, 2001,
Molecular Cell Biology
,
Scientific American Library
,
New York
.
18.
Sugi
,
H.
, and
Chaen
,
S.
, 2003, “
Force-Velocity Relationships in Actin-Myosin Interactions Causing Cytoplasmic Streaming in Algal Cells
,”
J. Exp. Biol.
0022-0949,
206
, pp.
1971
1976
.
19.
Chaen
,
S.
,
Inoue
,
J.
, and
Sugi
,
H.
, 1995, “
The Force-Velocity Relationship of the Atp-Dependent Actin-Myosin Sliding Causing Cytoplasmic Streaming in Algal Cells, Studied Using a Centrifuge Microscope
,”
J. Exp. Biol.
0022-0949,
198
, pp.
1021
1027
.
20.
Pickard
,
W. F.
, 2003, “
The Role of Cytoplasmic Streaming in Symplastic Transport
,”
Plant, Cell Environ.
0140-7791,
26
, pp.
1
15
.
21.
Pozrikidis
,
C.
, 1997,
Introduction to Theoretical and Computational Fluid Dynamics
,
Oxford University Press
,
New York
.
22.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1972,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
,
Dover
,
New York
.
23.
Fushimi
,
K.
, and
Verkman
,
A. S.
, 1991, “
Low Viscosity in the Aqueous Domain of Cell Cytoplasm Measured by Picosecond Polarization Microfluorimetry
,”
J. Cell Biol.
0021-9525,
112
, pp.
719
725
.
24.
Swaminathan
,
R.
,
Hoang
,
C. P.
, and
Verkman
,
A. S.
, 1997, “
Photobleaching Recovery and Anisotropy Decay of Green Fluorescent Protein GFP-S65T in Solution and Cells: Cytoplasmic Viscosity Probed by Green Fluorescent Protein Translational and Rotational Diffusion
,”
Biophys. J.
0006-3495,
72
, pp.
1900
1907
.
25.
Bicknese
,
S.
,
Periasamy
,
N.
,
Shohet
,
S. B.
, and
Verkman
,
A. S.
, 1993, “
Cytoplasmic Viscosity Near the Cell Plasma-Membrane-Measurement by Evanescent Field Frequency-Domain Microfluorimetry
,”
Biophys. J.
0006-3495,
65
, pp.
1272
1282
.
26.
Mofrad
,
M. R. K.
, and
Kamm
,
R. D.
, 2006,
Cytoskeletal Mechanics: Models and Measurements
,
Cambridge University Press
,
Cambridge
.
27.
Kachanov
,
M.
,
Shafiro
,
B.
, and
Tsukrov
,
I.
, 2003,
Handbook of Elasticity Solutions
,
Kluwer Academic
,
Boston
.
28.
Canetta
,
E.
,
Duperray
,
A.
,
Leyrat
,
A.
, and
Verdier
,
C.
, 2005, “
Measuring Cell Viscoelastic Properties Using a Force-spectrometer: Influence of Protein-Cytoplasm Interactions
,”
Biorheology
0006-355X,
42
, pp.
321
333
.
29.
Kasza
,
K. E.
,
Rowat
,
A. C.
,
Liu
,
J. Y.
,
Angelini
,
T. E.
,
Brangwynne
,
C. P.
,
Koenderink
,
G. H.
, and
Weitz
,
D. A.
, 2007, “
The Cell as a Material
,”
Curr. Opin. Cell Biol.
0955-0674,
19
, pp.
101
107
.
30.
Christensen
,
R. M.
, 1971,
Theory of Viscoelasticity: An Introduction
,
Academic
,
New York
.
31.
Huang
,
R.
, 2005, “
Kinetic Wrinkling of an Elastic Film on a Viscoelastic Substrate
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
63
89
.
32.
Huang
,
R.
, and
Im
,
S. H.
, 2006, “
Dynamics of Wrinkle Growth and Coarsening in Stressed Thin Films
,”
Phys. Rev. E
1063-651X,
74
, p.
026214
.
33.
Huang
,
R.
, and
Suo
,
Z.
, 2002, “
Wrinkling of a Compressed Elastic Film on a Viscous Layer
,”
J. Appl. Phys.
0021-8979,
91
, pp.
1135
1142
.
34.
Huang
,
R.
, and
Suo
,
Z.
, 2002, “
Instability of a Compressed Elastic Film on a Viscous Layer
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
1791
1802
.
35.
Huang
,
Z. Y.
,
Hong
,
W.
, and
Suo
,
Z.
, 2004, “
Evolution of Wrinkles in Hard Films on Soft Substrates
,”
Phys. Rev. E
1063-651X,
70
, p.
030601
.
36.
Im
,
S. H.
, and
Huang
,
R.
, 2005, “
Evolution of Wrinkles in Elastic-viscoelastic Bilayer Thin Films
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
955
961
.
37.
Jiang
,
H.
,
Khang
,
D.-Y.
,
Song
,
J.
,
Sun
,
Y.
,
Huang
,
Y.
, and
Rogesr
,
J. A.
, 2007, “
Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
, pp.
15607
15612
.
38.
Suresh
,
S.
, 2007, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Mater.
1359-6454,
55
, pp.
3989
4014
.
39.
Liu
,
Y. F.
,
Guo
,
Y. X.
,
Valles
,
J. M.
, and
Tang
,
J. X.
, 2006, “
Microtubule Bundling and Nested Buckling Drive Stripe Formation in Polymerizing Tubulin Solutions
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
, pp.
10654
10659
.
40.
Das
,
M.
,
Levine
,
A. J.
, and
MacKinstosh
,
F. C.
, 2008, “
Buckling and Force Propagation Along Intracellular Microtubules
,” e-print arXiv:0709.2344.
You do not currently have access to this content.