The problem of a functionally graded plane with a circular inclusion under a uniform antiplane eigenstrain is investigated, where the shear modulus varies exponentially along the x direction. By introducing a new function which satisfies the Helmholtz equation, the general solution to the original problem is derived in terms of series expansion. Numerical results are then presented which demonstrate clearly that for a functionally graded plane, the strain and stress fields inside the circular inclusion under uniform antiplane eigenstrains are intrinsically nonuniform. This phenomenon differs from the corresponding homogeneous material case where both the strain and stress fields are uniform inside the circular inclusion.

1.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
2.
Ru
,
C. Q.
, 2000, “
Eshelby’s Problem for a Two Dimensional Piezoelectric Inclusion of Arbitrary Shape
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
1051
1068
.
3.
Ru
,
C. Q.
, 2001, “
A Two Dimensional Eshelby Problem for Two Bonded Piezoelectric Half-planes
,”
Proc. R. Soc. London, Ser. A
1364-5021,
457
, pp.
865
883
.
4.
Ru
,
C. Q.
, 2003, “
Eshelby Inclusion of Arbitrary Shape in an Anisotropic Plane or Half-Plane
,”
Acta Mech.
0001-5970,
160
, pp.
219
234
.
5.
Pan
,
E.
, 2004, “
Eshelby Problem of Polygonal Inclusions in Anisotropic Piezoelectric Full- and Half-Planes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
567
589
.
6.
Pan
,
E.
,
Han
,
F.
, and
Albrecht
,
J. D.
, 2005, “
Strain Fields in InAs∕GaAs Quantum Wire Structures: Inclusion versus Inhomogeneity
,”
J. Appl. Phys.
0021-8979,
98
, pp.
013534
-
12
.
7.
Koizumi
,
M.
, 1993, “
The Concept of FGM
,”
Ceram. Trans.
1042-1122,
34
, pp.
3
10
.
8.
Erdogan
,
F.
,
Kaya
,
A. C.
, and
Joseph
,
P. F.
, 1991, “
The Mode-III Crack Problem in Bonded Materials With a Nonhomogeneous Interfacial Zone
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
419
427
.
9.
Shaw
,
R. P.
, and
Gipson
,
G. S.
, 1995, “
Interrelated Fundamental Solutions for Various Heterogeneous Potential, Wave and Advective-Diffusive Problems
,”
Eng. Anal. Boundary Elem.
0955-7997,
16
, pp.
29
34
.
10.
Gray
,
L. J.
,
Kaplan
,
T.
,
Richardson
,
J. D.
, and
Paulino
,
G. H.
, 2003, “
Green’s Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
543
549
.
11.
Chan
,
Y. S.
,
Gray
,
L. J.
,
Kaplan
,
T.
, and
Paulino
,
G. H.
, 2004, “
Green’s Functions for a Two-Dimensional Exponentially Graded Elastic Media
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
1689
1706
.
12.
Sutradhar
,
A.
, and
Paulino
,
G. H.
, 2004, “
A Simple Boundary Element Method for Problems of Potential Problems in Nonhomogeneous Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
, pp.
2203
2230
.
13.
Pan
,
E.
, and
Han
,
F.
, 2005, “
Green’s Functions for Transversely Isotropic Piezoelectric Functionally Graded Multilayered Half Spaces
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
3207
3233
.
14.
Markworth
,
A. J.
,
Ramesh
,
K. S.
, and
Parks
,
W. P.
, 1995, “
Review: Modelling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
0022-2461,
30
, pp.
2183
2193
.
15.
Lambros
,
J.
,
Santare
,
M. H.
,
Li
,
H.
, and
Sapna
III,
G. H.
, 1999, “
A Novel Technique for the Fabrication of Laboratory Scale Model Functionally Graded Materials
,”
Exp. Mech.
0014-4851,
39
, pp.
184
190
.
16.
Kieback
,
B.
,
Neubrand
,
A.
, and
Riedel
,
H.
, 2003, “
Processing Techniques for Functionally Graded Materials
,”
Mater. Sci. Eng., A
0921-5093,
362
, pp.
81
105
.
17.
Lafdi
,
K.
, 2005, “
TEM Characterization of the Interface Property Between the Fibre and Matrix
,” private communication.
18.
Ostoja-Starzewski
,
M.
,
Jasiuk
,
I.
,
Wang
,
W.
, and
Alzebdeh
,
K.
, 1996, “
Composites With Functionally Graded Interfaces: Meso-Continuum Concept and Effective Properties
,”
Acta Mater.
1359-6454,
44
, pp.
2057
2066
.
19.
Ostoja-Starzewski
,
M.
, 1998, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
2429
2455
.
20.
Ostoja-Starzewski
,
M.
, 2005, “
On the Admissibility of an Isotropic, Smooth Elastic Continuum
,”
Arch. Mech.
0373-2029,
57
(
4
), pp.
345
355
.
21.
Chew
,
W. C.
, 1995,
Waves and Fields in Inhomogeneous Media
,
IEEE
,
New York
.
22.
Ru
,
C. Q.
, and
Schiavone
,
P.
, 1997, “
A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
2551
2572
.
You do not currently have access to this content.