The problem of a functionally graded plane with a circular inclusion under a uniform antiplane eigenstrain is investigated, where the shear modulus varies exponentially along the direction. By introducing a new function which satisfies the Helmholtz equation, the general solution to the original problem is derived in terms of series expansion. Numerical results are then presented which demonstrate clearly that for a functionally graded plane, the strain and stress fields inside the circular inclusion under uniform antiplane eigenstrains are intrinsically nonuniform. This phenomenon differs from the corresponding homogeneous material case where both the strain and stress fields are uniform inside the circular inclusion.
1.
Eshelby
, J. D.
, 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,” Proc. R. Soc. London, Ser. A
1364-5021, 241
, pp. 376
–396
.2.
Ru
, C. Q.
, 2000, “Eshelby’s Problem for a Two Dimensional Piezoelectric Inclusion of Arbitrary Shape
,” Proc. R. Soc. London, Ser. A
1364-5021, 456
, pp. 1051
–1068
.3.
Ru
, C. Q.
, 2001, “A Two Dimensional Eshelby Problem for Two Bonded Piezoelectric Half-planes
,” Proc. R. Soc. London, Ser. A
1364-5021, 457
, pp. 865
–883
.4.
Ru
, C. Q.
, 2003, “Eshelby Inclusion of Arbitrary Shape in an Anisotropic Plane or Half-Plane
,” Acta Mech.
0001-5970, 160
, pp. 219
–234
.5.
Pan
, E.
, 2004, “Eshelby Problem of Polygonal Inclusions in Anisotropic Piezoelectric Full- and Half-Planes
,” J. Mech. Phys. Solids
0022-5096, 52
, pp. 567
–589
.6.
Pan
, E.
, Han
, F.
, and Albrecht
, J. D.
, 2005, “Strain Fields in InAs∕GaAs Quantum Wire Structures: Inclusion versus Inhomogeneity
,” J. Appl. Phys.
0021-8979, 98
, pp. 013534
-12
.7.
Koizumi
, M.
, 1993, “The Concept of FGM
,” Ceram. Trans.
1042-1122, 34
, pp. 3
–10
.8.
Erdogan
, F.
, Kaya
, A. C.
, and Joseph
, P. F.
, 1991, “The Mode-III Crack Problem in Bonded Materials With a Nonhomogeneous Interfacial Zone
,” ASME J. Appl. Mech.
0021-8936, 58
, pp. 419
–427
.9.
Shaw
, R. P.
, and Gipson
, G. S.
, 1995, “Interrelated Fundamental Solutions for Various Heterogeneous Potential, Wave and Advective-Diffusive Problems
,” Eng. Anal. Boundary Elem.
0955-7997, 16
, pp. 29
–34
.10.
Gray
, L. J.
, Kaplan
, T.
, Richardson
, J. D.
, and Paulino
, G. H.
, 2003, “Green’s Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction
,” ASME J. Appl. Mech.
0021-8936, 70
, pp. 543
–549
.11.
Chan
, Y. S.
, Gray
, L. J.
, Kaplan
, T.
, and Paulino
, G. H.
, 2004, “Green’s Functions for a Two-Dimensional Exponentially Graded Elastic Media
,” Proc. R. Soc. London, Ser. A
1364-5021, 460
, pp. 1689
–1706
.12.
Sutradhar
, A.
, and Paulino
, G. H.
, 2004, “A Simple Boundary Element Method for Problems of Potential Problems in Nonhomogeneous Media
,” Int. J. Numer. Methods Eng.
0029-5981, 60
, pp. 2203
–2230
.13.
Pan
, E.
, and Han
, F.
, 2005, “Green’s Functions for Transversely Isotropic Piezoelectric Functionally Graded Multilayered Half Spaces
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 3207
–3233
.14.
Markworth
, A. J.
, Ramesh
, K. S.
, and Parks
, W. P.
, 1995, “Review: Modelling Studies Applied to Functionally Graded Materials
,” J. Mater. Sci.
0022-2461, 30
, pp. 2183
–2193
.15.
Lambros
, J.
, Santare
, M. H.
, Li
, H.
, and Sapna
III, G. H.
, 1999, “A Novel Technique for the Fabrication of Laboratory Scale Model Functionally Graded Materials
,” Exp. Mech.
0014-4851, 39
, pp. 184
–190
.16.
Kieback
, B.
, Neubrand
, A.
, and Riedel
, H.
, 2003, “Processing Techniques for Functionally Graded Materials
,” Mater. Sci. Eng., A
0921-5093, 362
, pp. 81
–105
.17.
Lafdi
, K.
, 2005, “TEM Characterization of the Interface Property Between the Fibre and Matrix
,” private communication.18.
Ostoja-Starzewski
, M.
, Jasiuk
, I.
, Wang
, W.
, and Alzebdeh
, K.
, 1996, “Composites With Functionally Graded Interfaces: Meso-Continuum Concept and Effective Properties
,” Acta Mater.
1359-6454, 44
, pp. 2057
–2066
.19.
Ostoja-Starzewski
, M.
, 1998, “Random Field Models of Heterogeneous Materials
,” Int. J. Solids Struct.
0020-7683, 35
, pp. 2429
–2455
.20.
Ostoja-Starzewski
, M.
, 2005, “On the Admissibility of an Isotropic, Smooth Elastic Continuum
,” Arch. Mech.
0373-2029, 57
(4
), pp. 345
–355
.21.
Chew
, W. C.
, 1995, Waves and Fields in Inhomogeneous Media
, IEEE
, New York
.22.
Ru
, C. Q.
, and Schiavone
, P.
, 1997, “A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear
,” Proc. R. Soc. London, Ser. A
1364-5021, 453
, pp. 2551
–2572
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.