A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r12 and a pair of oscillatory singularities r12±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.

1.
Harrison
,
W. B.
,
McHenry
,
K. D.
, and
Koepke
,
B. G.
, 1986, “
Monolithic Multilayer Piezoelectric Ceramic Transducer
,” in
Proceedings of the IEEE Sixth International Symposium on Applied Ferromagnetics
, pp.
265
272
.
2.
Shaulov
,
A. A.
,
Smith
,
W. A.
, and
Ting
,
R. Y.
, 1989, “
Modified-Lead-Titanate/Polymer Composites for Hydrophone Applications
,”
Ferroelectrics
0015-0193,
93
, pp.
177
182
.
3.
Sevostianov
,
I.
,
Levin
,
V.
, and
Kachanov
,
M.
, 2001, “
On the Modeling and Design of Piezocomposites With Prescribed Properties
,”
Arch. Appl. Mech.
0939-1533,
71
, pp.
733
747
.
4.
Kuo
,
C. M.
, and
Barnett
,
D. M.
, 1991, “
Stress Singularities of Interface Cracks in Bonded Piezoelectric Half-Spaces
,” in
Modern Theory of Anisotropic Elasticity and Applications
, edited by
J. J.
Wu
,
T. C. T.
Ting
, and
D. M.
Barnett
,
SIAM Proceedings Series
,
SIAM
,
Philadelphia, PA
, pp.
33
50
.
5.
Suo
,
Z.
,
Kuo
,
C. M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics of Piezoelectric Ceramics
,
J. Mech. Phys. Solids
0022-5096,
40
, pp.
739
765
.
6.
Beom
,
H. G.
, and
Atluri
,
S. N.
, 1996, “
Near-Tip and Intensity Factors for Interfacial Cracks in Dissimilar Anisotropic Piezoelectric Media
,”
Int. J. Fract.
0376-9429,
75
, pp.
163
183
.
7.
Zhong
,
Z.
, and
Meguid
,
S. A.
, 1997, “
Interfacial Debonding of a Circular Inhomogeneity in Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
1965
1984
.
8.
Qin
,
Q. H.
, and
Yu
,
S. W.
, 1997, “
An Arbitrarily-Oriented Plane Crack Terminating an Interface Between Dissimilar Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
581
590
.
9.
Ru
,
C. Q.
,
Mao
,
X.
, and
Epstein
,
M.
, 1998, “
Electric Field Induced Interfacial Cracking in Multilayer Electrostrictive Actuators
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1301
1318
.
10.
Deng
,
W.
, and
Meguid
,
S. A.
, 1998, “
Analysis of Conducting Rigid Inclusion at the Interface of Two Dissimilar Piezoelectric Materials
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
76
84
.
11.
Narita
,
K.
, and
Shindo
,
Y.
, 1999, “
Anti-Plane Shear Crack in a Piezoelectric Layer Bonded to Dissimilar Half Spaces
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
66
72
.
12.
Ding
,
H. J.
,
Chi
,
Y.
, and
Guo
,
F.
, 1999, “
Solutions for Transversely Isotropic Piezoelectric Infinite Body, Semi-Infinite Body and Bimaterial Infinite Body Subjected to Uniform Ring Loading and Charges
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
2613
2631
.
13.
Tian
,
W. Y.
, and
Chen
,
Y. H.
, 2000, “
Interaction Between an Interface Crack and Subinterface Microcracks in Metal/Piezoelectric Bimaterials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
7743
7757
.
14.
Ma
,
L. F.
, and
Chen
,
Y. H.
, 2001, “
Weight Functions for Interface Cracks in Dissimilar Anisotropic Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
110
, pp.
263
279
.
15.
Beom
,
H. G.
, and
Atluri
,
S. N.
, 2002, “
Conducting Cracks in Dissimilar Piezoelectric Media
,”
Int. J. Fract.
0376-9429,
118
, pp.
285
301
.
16.
Beom
,
H. G.
, 2003, “
Permeable Cracks Between Two Dissimilar Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
6669
6679
.
17.
Ou
,
Z. C.
, 2003, “
Singularity Parameters ε and κ for Interface Cracks in Transversely Isotropic Piezoelectric Bimaterials
,”
Int. J. Fract.
0376-9429,
119
, pp.
L41
L46
.
18.
Ou
,
Z. C.
, and
Wu
,
X. J.
, 2003, “
On the Crack Tip Stress Singularity of Interfacial Cracks in Transversely Isotropic Piezoelectric Bimaterials
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7499
7511
.
19.
Li
,
Q.
, and
Chen
,
Y. H.
, 2007, “
Solution of a Semi-Permeable Interface Crack in Dissimilar Piezoelectric Materials
,”
ASME J. Appl. Mech.
0021-8936,
74
(
4
), pp.
833
844
.
20.
Govorukha
,
V. B.
,
Loboda
,
V. V.
, and
Kamlah
,
M.
, 2006, “
On the Influence of the Electric Permeability on an Interface Crack in a Piezoelectric Bimaterial Compound
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1979
1990
.
21.
Ou
,
Z. C.
, and
Chen
,
Y. H.
, 2004, “
Interface Crack Problem in Elastic Dielectric/Piezoelectric Bimaterials
,”
Int. J. Fract.
0376-9429,
130
, pp.
427
454
.
22.
McMeeking
,
R. M.
, 1999, “
Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen
,”
Eng. Fract. Mech.
0013-7944,
64
, pp.
217
244
.
23.
McMeeking
,
R. M.
, 2001, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
0376-9429,
108
, pp.
25
41
.
24.
McMeeking
,
R. M.
, 2004, “
The Energy Release Rate for a Griffith Crack in a Piezoelectric Material
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1149
1163
.
25.
Parton
,
V. Z.
, and
Kudryavtsev
,
B. A.
, 1988,
Electromagnetoelasticity
,
Gordon and Breach
,
New York
.
26.
Hao
,
T. H.
, and
Shen
,
Z. Y.
, 1994, “
A New Electric Boundary Condition of Electric Fracture Mechanics and its Application
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
793
802
.
27.
Dunn
,
M.
, 1994, “
The Effects of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solids
,”
Eng. Fract. Mech.
0013-7944,
48
, pp.
25
39
.
28.
Sosa
,
H.
, and
Khutoryansky
,
N.
, 1996, “
New Development Concerning Piezoelectric Materials With Defects
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
3399
3414
.
29.
Xu
,
X. L.
, and
Rajapakse
,
R. K. N. D.
, 2001, “
On a Plane Crack in Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7643
7658
.
30.
Heyer
,
V.
,
Schneider
,
G. A.
,
Balke
,
H.
,
Drescher
,
J.
, and
Bahr
,
H. A.
, 1998, “
A Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelectric PZT-PIC 151 Ceramics
,”
Acta Mater.
1359-6454,
46
, pp.
6615
6622
.
31.
Park
,
S. B.
, and
Sun
,
C. T.
, 1995, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
78
, pp.
1475
1480
.
32.
Park
,
S. B.
, and
Sun
,
C. T.
, 1995, “
Effect of Electric Fields on Fracture of Piezoelectric Ceramics
,”
Int. J. Fract.
0376-9429,
70
, pp.
203
216
.
33.
Ting
,
T. C. T.
, 1986, “
Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites
,”
Int. J. Solids Struct.
0020-7683,
22
, pp.
965
983
.
34.
Ting
,
T. C. T.
, 1990, “
Interface Crack in Anisotropic Bimaterials
,”
J. Mech. Phys. Solids
0022-5096,
38
, pp.
505
513
.
35.
England
,
A. H.
, 1965, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
400
402
.
36.
Wu
,
K. C.
, 1990, “
Stress Intensity Factors and Energy Release Rate for Interfacial Cracks Between Dissimilar Anisotropic Materials
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
882
886
.
37.
Qu
,
J. M.
, and
Li
,
Q. Q.
, 1991, “
Interfacial Dislocation and its Application to Interface Cracks in Anisotropic Bimaterials
,”
J. Elast.
0374-3535,
26
, pp.
169
195
.
38.
Chen
,
Y. H.
, and
Hasebe
,
N.
, 2005, “
Current Understanding on Fracture Behaviors of Ferroelectric/Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
673
687
.
39.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1975, “
Dislocations and Line Charges in Anisotropic Piezoelectric Insulators
,”
Phys. Status Solidi B
0370-1972,
67
,
105
111
.
40.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of Mathematical Theory of Elasticity
,
Noordhoof
,
Leyden
.
You do not currently have access to this content.