In this paper, the vibrational behavior of the multiwalled carbon nanotubes (MWCNTs) embedded in elastic media is investigated by a nonlocal shell model. The nonlocal shell model is formulated by considering the small length scales effects, the interaction of van der Waals forces between two adjacent tubes and the reaction from the surrounding media, and a set of governing equations of motion for the MWCNTs are accordingly derived. In contrast to the beam models in the literature, which would only predict the resonant frequencies of bending vibrational modes by taking the MWCNT as a whole beam, the current shell model can find the resonant frequencies of three modes being classified as radial, axial, and circumferential for each nanotube of a MWCNT. Big influences from the small length scales and the van der Waals’ forces are observed. Among these, noteworthy is the reduction in the radial frequencies due to the van der Waals’ force interaction between two adjacent nanotubes. The numerical results also show that when the spring constant k0 of the surrounding elastic medium reaches a certain value, the lowest resonant frequency of the double walled carbon nanotube drops dramatically.

1.
Ijima
,
S.
, 1991, “
Helical Micro-Tubes of Graphite Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
, 1996, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
381
, pp.
678
680
.
3.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
II,
R. M.
,
Chi
,
V.
,
Brooks
Jr.,
F. P.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
, pp.
582
584
.
4.
Roberston
,
D. H.
,
Brenner
,
D. W.
, and
Mintimore
,
J. W.
, 1992, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
0163-1829,
45
, pp.
12592
12595
.
5.
Ruoff
,
R. S.
, and
Lorents
,
D. C.
, 1995, “
Mechanical and Thermal Properties of Carbon Nanotubes
,”
Carbon
0008-6223,
33
(
7
), pp.
925
930
.
6.
Sawada
,
S.
, and
Hamada
,
N.
, 1992, “
Energetics of Carbon Nano-Tubes
,”
Solid State Commun.
0038-1098,
83
, pp.
917
919
.
7.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1974
.
8.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
de
,
Heer W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
0036-8075,
283
, pp.
1513
1516
.
9.
Luo
,
J.
, and
Daniel
,
I. M.
, 2003, “
Characterization and Modeling of Mechanical Behavior of Polymer∕Clay Nano Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1607
1616
.
10.
Frankland
,
S. J. V.
,
Harik
,
V. M.
,
Odegard
,
G. M.
,
Brenner
,
D. W.
, and
Gates
,
T. S.
, 2003, “
The Stress-Strain Behavior of Polymer-Nanotube Composites From Molecular Dynamics Simulation
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1655
1661
.
11.
Dai
,
H.
,
Hafner
,
J. H.
,
Rinzler
,
A. G.
,
Colber
,
T. D.
, and
Smalley
,
R. E.
, 1996, “
Nanotubes as Nanoprobes In Scanning Probe Microscopy
,”
Nature (London)
0028-0836,
384
, pp.
147
150
.
12.
Rueckers
,
T.
,
Kim
,
K.
,
Joselevich
,
E.
,
Tseng
,
G. T.
,
Cheung
,
C. L.
, and
Lieber
,
C. M.
, 2000, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
0036-8075,
289
, pp.
94
97
.
13.
Dercke
,
V.
,
Martel
,
R.
,
Appendzeller
,
J.
, and
Avouris
,
P.
, 2001, “
Carbon Nanotube Inter and Intramolecular Logic Gates
,”
Nano Lett.
1530-6984,
1
, pp.
453
456
.
14.
Saito
,
R.
,
Matsuo
,
R.
,
Kimura
,
T.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 2001, “
Anomalous Potential Barrier of Double-Wall Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
348
(
9
), pp.
187
193
.
15.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
16.
Harik
,
V. M.
, 2001, “
Ranges of Applicability for the Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nanorods
,”
Solid State Commun.
0038-1098,
120
, pp.
331
335
.
17.
Peddieson
,
J.
,
Buchanan
,
R.
, and
McNitt
,
R. P.
, 2003, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
305
312
.
18.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
0021-8979,
94
, pp.
7281
7287
.
19.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2003, “
Vibration of an Embedded Multiwall Carbon Nanotube
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1533
1542
.
20.
Kim
,
Y. A.
,
Muramatsu
,
H.
,
Hayashi
,
T.
,
Endo
,
M.
,
Terrones
,
M.
, and
Dresselhaus
,
M. S.
, 2004, “
Thermal Stability and Structural Changes of Double-Walled Carbon Nanotubes by Heat Treatment
,”
Chem. Phys. Lett.
0009-2614,
398
, pp.
87
92
.
21.
Wang
,
L.
, and
Hu
,
H.
, 2005, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
71
, p.
195412
.
22.
Li
,
R.
, and
Kardomateas
,
G. A.
, 2006, “
Thermal Buckling of Multi-Walled Carbon Nanotubes by Nonlocal Elasticity
,”
ASME J. Appl. Mech.
0021-8936,
74
(
3
), pp.
399
405
.
23.
Eringen
,
A. C.
, 1972, “
Non-Local Polar Elastic Continua
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
1
16
.
24.
Eringen
,
A. C.
, and
Edelen
,
D. G. B.
, 1972, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
233
248
.
25.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
0021-8979,
54
, pp.
4703
4710
.
26.
Miyamoto
,
Y.
,
Saito
,
S.
, and
Tomanek
,
D.
, 2001, “
Electronic Interwall Interactions and Charge Redistribution in Multiwall Nanotubes
,”
Phys. Rev. B
0163-1829,
65
(
04
), p.
041402
.
27.
Lu
,
W.
,
Dong
,
J.
, and
Li
,
Z.
, 2000, “
Optical Properties of Aligned Carbon Nanotube Systems Studied by the Effective-Medium Approximation Method
,”
Phys. Rev. B
0163-1829,
63
, p.
033401
.
28.
Chopra
,
N. G.
, and
Zettl
,
A.
, 1998, “
Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube
,”
Solid State Commun.
0038-1098,
105
(
5
), pp.
297
300
.
You do not currently have access to this content.