Under loads normal to the direction of the fibers, composites suffer failures that are known as matrix or interfiber failures, typically involving interface cracks between matrix and fibers, the coalescence of which originates macrocracks in the composite. The purpose of this paper is to develop a micromechanical model, using the boundary element method, to generate information aiming to explain and support the mechanism of appearance and propagation of the damage. To this end, a single fiber surrounded by the matrix and with a partial debonding is studied. It has been found that under uniaxial loading transversal to the fibers direction the most significant phenomena appear for semidebonding angles in the interval between 60deg and 70deg. After this interval the growth of the crack along the interface is stable (energy release rate (ERR) decreasing) in pure Mode II, whereas it is plausibly unstable in mixed mode (dominated by Mode I for semidebondings smaller than 30deg) until it reaches the interval. At this interval the direction of maximum circumferential stress at the neighborhood of the crack tip is approximately normal to the applied load. If a crack corresponding to a debonding in this interval leaves the interface and penetrates into the matrix then: (a) the growth through the matrix is unstable in pure Mode I; (b) the value of the ERR reaches a maximum (in comparison with other debonding angles); and (c) the ERR is greater than that released if the crack continued growing along the interface. All this suggests that it is in this interval of semidebondings (60-70deg) that conditions are most appropriate for an interface crack to kink. Experiments developed by the authors show an excellent agreement between the predictions generated in this paper and the evolution of the damage in an actual composite.

1.
Hinton
,
M. J.
,
Soden
,
P. D.
, and
Kaddour
,
A. S.
, guest eds., 1998, “
Failure Criteria in Fiber-Reinforced-Polymer Composites (Special Issue)
,”
Compos. Sci. Technol.
0266-3538,
58
(
7
).
2.
Hinton
,
M. J.
,
Soden
,
P. D.
, and
Kaddour
,
A. S.
, guest eds., 2002, “
World Wide Failure Exercise on Failure Predictions in Composites (Special Issue)
,”
Compos. Sci. Technol.
0266-3538,
62
(
12–13
).
3.
Hashin
,
Z.
, and
Rotem
,
A.
, 1973, “
A Fatigue Failure Criterion for Fiber Reinforced Materials
,”
J. Compos. Mater.
0021-9983,
7
, pp.
448
464
.
4.
Gamstedt
,
E. K.
, and
Sjögren
,
B. A.
, 1999, “
Micromechanisms in Tension-Compression Fatigue of Composite Plies Containing Transverse Plies
,”
Compos. Sci. Technol.
0266-3538,
59
, pp.
167
178
.
5.
Williams
,
M. L.
, 1959, “
The Stress Around a Fault of Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
0037-1106,
49
, pp.
199
204
.
6.
England
,
A. H.
, 1966, “
An Arc Crack Around a Circular Elastic Inclusion
,”
J. Appl. Mech.
0021-8936,
33
, pp.
637
640
.
7.
Perlman
,
A. B.
, and
Sih
,
G. C.
, 1967, “
Elastostatic Problems of Curvilinear Cracks in Bonded Dissimilar Materials
,”
Int. J. Eng. Sci.
0020-7225,
5
, pp.
845
867
.
8.
Toya
,
M.
, 1974, “
A Crack Along the Interface of a Circular Inclusion Embedded in an Infinite Solid
,”
J. Mech. Phys. Solids
0022-5096,
22
, pp.
325
348
.
9.
Banks-Sills
,
L.
, and
Ashkenazi
,
D.
, 2000, “
A Note on Fracture Criteria for Interface Fracture
,”
Int. J. Fract.
0376-9429,
103
, pp.
177
188
.
10.
Zhang
,
H.
,
Ericson
,
M. L.
,
Varna
,
J.
, and
Berglund
,
L. A.
,
, 1997, “
Transverse Single-Fiber Test for Interfacial Debonding in Composites: 1. Experimental Observations
,”
Composites, Part A
1359-835X,
28A
, pp.
309
315
.
11.
Varna
,
J.
,
Berglund
,
L. A.
, and
Ericson
,
M. L.
, 1997, “
Transverse Single Fiber Test for Interfacial Debonding in Composites 2: Modelling
,”
Composites, Part A
1359-835X,
28
, pp.
317
326
.
12.
Prasad
,
P. B. N
, and
Simha
,
K. R. Y.
, 2003, “
Interface Crack Around Circular Inclusion: SIF, Kinking, Debonding Energetics
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
285
307
.
13.
Chao
,
R.
, and
Laws
,
N.
, 1997, “
The Fiber-Matrix Interface Crack
,”
J. Appl. Mech.
0021-8936,
64
, pp.
992
999
.
14.
Comninou
,
M.
, 1977, “
The Interface Crack
,”
J. Appl. Mech.
0021-8936,
44
, pp.
631
636
.
15.
Paris
,
F.
,
del Caño
,
J. C.
, and
Varna
,
J.
, 1996, “
The Fiber-Matrix Interface Crack—A Numerical Analysis Using Boundary Elements
,”
Int. J. Fract.
0376-9429,
82
, pp.
11
29
.
16.
Varna
,
J.
,
Paris
,
F.
, and
del Caño
,
J. C.
, 1997, “
The Effect of Crack-Face Contact and Fibre/Matrix Debonding in Transverse Tensile Loading
,”
Compos. Sci. Technol.
0266-3538,
57
, pp.
523
532
.
17.
Paris
,
F.
, and
Cañas
,
J.
, 1997,
Boundary Element Method. Fundamentals and Applications
,
Oxford University Press
, Oxford, UK.
18.
Yuan
,
F. G.
, and
Yang
,
S.
, 1997, “
The Curved Interfacial Crack Between Dissimilar Isotropic Solids
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
641
660
.
19.
Rice
,
J. R.
, 1988, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
J. Appl. Mech.
0021-8936,
55
, pp.
98
103
.
20.
England
,
A. H.
, 1965, “
A Crack Between Dissimilar Media
,”
J. Appl. Mech.
0021-8936,
32
, pp.
400
402
.
21.
Erdogan
,
F.
, 1965, “
Stress Distribution Bonded Dissimilar Materials with Cracks
,”
J. Appl. Mech.
0021-8936,
32
, pp.
403
410
.
22.
Broberg
,
K. G.
, 1999,
Cracks and Fracture
,
Academic Press
, London.
23.
Rice
,
J. R.
,
Suo
,
Z.
, and
Wang
,
J. S.
, 1990, “
Mechanics and Thermodynamics of Brittle Interfacial Failure in Bimaterial Systems
,”
Metal-Ceramics Interfaces
,
M.
Rühle
et al.
, eds.,
Pergamon
, New York, pp.
269
294
.
24.
Irwin
,
G. R.
, 1957, “
Analysis of Stresses and Strain Near the End of a Crack Transversing a Plate
,”
J. Appl. Mech.
0021-8936,
24
, pp.
361
364
.
25.
Sun
,
S. T.
, and
Jih
,
C. J.
, 1987, “
On Strain Energy Release Rates for Interfacial Cracks in Bi-material Media
,”
Eng. Fract. Mech.
0013-7944,
28
, pp.
13
20
.
26.
Raju
,
I. S.
,
Crews
,
J. H.
, and
Aminpour
,
M. A.
, 1988, “
Convergence of Strain Energy Release Rate Components for Edge-Delaminated Composite Laminates
,”
Eng. Fract. Mech.
0013-7944,
30
, pp.
383
396
.
27.
Toya
,
M.
, 1992, “
On Mode I and Mode II Energy Release Rates of an Interface Crack
,”
Int. J. Fract.
0376-9429,
56
, pp.
345
352
.
28.
Malyshev
,
B. M.
, and
Salganik
,
R. L.
, 1965, “
The Strength of Adhesive Joints Using the Theory of Cracks
,”
Int. J. Fract. Mech.
0020-7268,
1
, pp.
114
128
.
29.
Mantič
,
V.
, and
París
,
F.
, 2004, “
Relation Between SIF and ERR Based Measures of Fracture Mode Mixity in Interface Cracks
,”
Int. J. Fract.
0376-9429,
130
, pp.
557
569
.
30.
Hills
,
D. A.
, and
Barber
,
J. R.
, 1993, “
Interface Cracks
,”
Int. J. Mech. Sci.
0020-7403,
35
, pp.
27
37
.
31.
Aravas
,
N.
, and
Sharma
,
S. M.
, 1991, “
An Elastoplastic Analysis of the Interface Crack With a Contact Zones
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
311
344
.
32.
He
,
M.-Y.
, and
Hutchinson
,
J. W.
, 1989, “
Kinking of a Crack Out of an Interface
,”
J. Appl. Mech.
0021-8936,
56
, pp.
270
278
.
33.
Evans
,
A. G.
,
Rühle
,
M.
,
Dalgleish
,
B. J.
, and
Charalambides
,
P. G.
, 1990, “
The Fracture Energy of Bimaterial Interfaces
,”
Metall. Trans. A
0360-2133,
21A
, pp.
2419
2429
.
34.
Liechti
,
K. M.
, and
Chai
,
Y. S.
, 1992, “
Asymmetric Shielding in Interfacial Fracture under In-plane Shear
,”
J. Appl. Mech.
0021-8936,
59
, pp.
295
304
.
35.
Hutchinson
,
J. W.
, and
Suo
,
Z.
, 1992, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
0065-2156,
29
, pp.
63
191
.
36.
Erdogan
,
F.
, and
Sih
,
G. C.
, 1965, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
J. Basic Eng.
0021-9223,
85
, pp.
519
527
.
37.
Geubelle
,
P. H.
, and
Knauss
,
W. G.
, 1994, “
Crack Propagation at and Near Bimaterial Interfaces: Linear Analysis
,”
J. Appl. Mech.
0021-8936,
61
, pp.
560
566
.
38.
Hayashi
,
K.
, and
Nemat-Nasser
,
S.
, 1981, “
On Branched, Interface Cracks
,”
J. Appl. Mech.
0021-8936,
48
, pp.
529
533
.
39.
Comninou
,
M.
, 1990, “
An Overview of Interface Cracks
,”
Eng. Fract. Mech.
0013-7944,
37
, pp.
197
208
.
40.
Leblond
,
J. B.
, and
Frelat
,
J.
, 2001, “
Crack Kinking from an Interface Crack with Initial Contact Between the Crack Lips
,”
Eur. J. Mech. A/Solids
0997-7538,
20
, pp.
937
951
.
41.
París
,
F.
,
Correa
,
E.
, and
Cañas
,
J.
, 2003, “
Micromechanical View of Failure of the Matrix in Fibrous Composite Materials
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1041
1052
.
You do not currently have access to this content.