By applying a methodology useful for analysis of complex fluids based on a synergistic combination of experiments, computer simulations, and theoretical investigation, a model was built to investigate the fluid dynamics of granular flows in an intermediate regime, where both collisional and frictional interactions may affect the flow behavior. In Part I, experiments were described using a modified Newton’s Cradle device to obtain values for the viscous damping coefficient, which were scarce in the literature. This paper discusses detailed simulations of frictional interactions between the grains during a binary collision by employing a numerical model based on finite element methods. Numerical results are presented of slipping, and sticking motions of a first grain over the second one. The key was to utilize the results of the aforementioned comprehensive model in order to provide a simplified model for accurate and efficient granular-flow simulations with which the qualitative trends observed in the experiments can be captured. To validate the model, large scale simulations were performed for the specific case of granular flow in a rapidly spinning bucket. The model was able to reproduce experimentally observed flow phenomena, such as the formation of a depression in the center of the bucket spinning at high frequency of 100rad/s. This agreement suggests that the model may be a useful tool for the prediction of dense granular flows in industrial applications, but highlights the need for further experimental investigation of granular flows in order to refine the model.

1.
Jaeger
,
H. M.
,
Nagel
,
S. R.
, and
Behringer
,
R. P.
, 1996, “
The Physics of Granular Materials
,”
Phys. Today
0031-9228,
49
, pp.
32
39
.
2.
Zhou
,
T.
, and
Kadanoff
,
L. P.
, 1996, “
Inelastic Collapse of Three Particles
,”
Phys. Rev. E
1063-651X,
54
, pp.
623
628
.
3.
Savage
,
S. B.
, and
Lun
,
C. K. K.
, 1988, “
Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids
,”
J. Fluid Mech.
0022-1120,
189
, pp.
311
335
.
4.
Bak
,
P.
,
How nature Works. A Science of Self-Organized Criticality
,
Copernicus
,
New York
.
5.
Gray
,
J. M. N. T.
, and
Hutter
,
K.
, 1997, “
Pattern Formation in Granular Avalanches
,”
Continuum Mech. Thermodyn.
0935-1175,
9
, pp.
341
345
.
6.
Baxter
,
G. W.
, and
Yeung
,
C.
, 1999, “
The Rotating Bucket of Sand: Experiment and Theory
,”
Chaos
1054-1500,
9
, pp.
631
638
.
7.
Bouchaud
,
J. P.
,
Cates
,
M. E.
,
Prakash
,
J. R.
, and
Edwards
,
S. F.
, 1995, “
Hysteresis and Metastability in a Continuum Sandpile Model
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
1982
1985
.
8.
Zamankhan
,
P.
, and
Boardbar
,
H. M.
, 2006, “
Complex Flow Dynamics in Dense Granular Flows—Part I, Experimentation
,”
J. Appl. Mech.
0021-8936
73
(
4
), pp.
648
657
.
9.
Goldsmith
,
W.
, 1960,
Impact, the Theory and Physics Behaviour of Colliding Solids
,
Dover
,
New York
.
10.
Hallquist
,
J. O.
, 1979, “
NIKE2D—A Vectorzed, Implicit, Finite Deformation, Finite Elements Code for Analyzing the Static and Dynamic Response Of 2D Solids
,” Reports No. UCRL-52678, LLNL, Livemore, CA.
11.
Benson
,
D. J.
, and
Hallquist
,
J. O.
, 1990, “
A Single Surface Contact Algorithm for Post-Bucking Analysis of Shell Structure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
78
, pp.
141
163
.
12.
Belytschko
,
T.
, and
Neal
,
M. O.
, 1991, “
Contact-Impact by the Pinball Algorithm with Penalty And Lagrangian Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
547
572
.
13.
Nilsson
,
L.
,
Zhong
,
Z.-H.
, and
Oldenburg
,
M.
, 1989, “
Analysis of Shell Structures Subjected to Contact Impacts
,”
Proceedings of the Symposium on Analytical and Computational Models of Shells
, Vol.
ASME CED-3
,
ASME
,
New York
, p.
457
.
14.
Zhong
,
Z.-H.
, and
Nilsson
,
L.
, 1996, “
A Unified Contact Algorithm Based on the Territory Concept
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
130
, pp.
1
16
.
15.
Oden
,
J. T.
, and
Pires
,
E. B.
, 1983, “
Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
67
76
.
16.
Bathe
,
K. J.
, and
Chaudhary
,
A.
, 1985, “
A Solution Method for Planar and Axismetric Contact Problem
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
65
88
.
17.
Guerra
,
F. M.
, and
Browning
,
R. V.
, 1983, “
Comparison of Two Slideline Methods Using Adina
,”
Comput. Struct.
0045-7949,
17
, pp.
819
834
.
18.
Sellgran
,
U.
,
Björklund
,
S.
, and
Andersson
,
S.
, 2003, “
A Finite Element-Based Model of Normal Contact Between Rough Surfaces
,”
Wear
0043-1648,
254
, pp.
1180
1188
.
19.
Coulomb
,
C. A.
, 1785, “
Theorie des Machines Simples
,”
Memoires De Mathematique Et De Physique De L’ Academie Des Sciences, Paris
,
10
, pp.
161
331
.
20.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1997,
Computer Simulation of Liquids
,
Clarendon
,
Oxford, UK
.
21.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
22.
Dormand
,
J. R.
, and
Price
,
P. J.
, 1980, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
0377-0427,
6
, pp.
19
26
.
23.
Silbert
,
L. E.
,
Etras
,
D.
,
Grest
,
G. S.
,
Hasley
,
T. C.
,
Levine
,
D.
, and
Plimpton
,
S. J.
, 2001, “
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
1063-651X,
64
, p.
051303
.
24.
Yoon
,
S.
,
Eom
,
B.
,
Lee
,
J.
, and
Yu
,
I.
, 1999, “
Circular Kinks on the Surface of Granular Material Rotated in a Tilted Spinning Bucket
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
4639
4642
.
25.
Vavrek
,
M. E.
, and
Baxter
,
G. W.
, 1994, “
Surface Shape of a Spinning Bucket of Sand
,”
Phys. Rev. E
1063-651X,
50
, pp.
R3353
R3356
.
26.
Yeung
,
C.
, 1998, “
Metastability of a Granular Surface In A Spinning Bucket
,”
Phys. Rev. E
1063-651X,
57
, pp.
4528
4534
.
27.
Zamankhan
,
P.
,
Tynjala
,
T
,
Polashenski
,
W.
, Jr.
,
Zamankhan
,
P.
, and
Sarkomaa
,
P.
, 1999, “
Stress Fluctuations in Continuously Sheared Dense Granular Materials
,”
Phys. Rev. E
1063-651X,
60
, pp.
7149
7156
.
28.
Polashenski
,
W.
, Jr.
,
Zamankhan
,
P.
,
Makiharju
,
S.
, and
Zamankhan
,
P.
, 2002, “
Fine Structures in Sheared Granular Flows
,”
Phys. Rev. E
1063-651X,
66
, p.
021303
.
You do not currently have access to this content.