The shear modulus of two-dimensional liquid foams in the dry limit of low liquid content has been studied theoretically. The focus is on the effect of geometrical disorder on the shear modulus (besides the influence of surface tension). Various theoretical predictions are formulated that are all based on the assumptions of isotropic geometrical characteristics, incompressible bubbles, and negligible edge curvature. Three of these predictions are based on a transformation of Princen’s theory that is strictly valid only for regular hexagonal bubbles. Another prediction takes into account variations in bubble areas by considering the foam as consisting of approximately regular hexagonal bubbles with varying areas. Two other predictions are solely based on the characteristics of the bubble edges. The first of these is based on the assumption of affine movement of bubble vertices, while the second accounts for nonaffine deformation by considering the interaction with neighboring edges. The theoretical predictions for the shear modulus are compared with the result from a single foam simulation. For the single simulation considered, all predictions, except that based on affine movement of bubble vertices, are close to the value obtained from this simulation.

1.
Weaire
,
D. L.
, and
Hutzler
,
S.
, 1999,
The Physics of Foams
,
Oxford University Press
,
Oxford
.
2.
Dollet
,
B.
,
Elias
,
F.
,
Quilliet
,
C.
,
Raufaste
,
C.
,
Aubouy
,
M.
, and
Graner
,
F.
, 2005, “
Two-Dimensional Flow of Foam Around Obstacles: Force Measurements
,”
Phys. Rev. E
1063-651X,
71
,
031403
.
3.
Janiaud
,
E.
, and
Graner
,
F.
, 2005, “
Foam in a Two-Dimensional Couette Shear: A Local Measurement of Bubble Deformation
,”
J. Fluid Mech.
0022-1120,
532
, pp.
243
267
.
4.
Asipauskas
,
M.
,
Aubouy
,
M.
,
Glazier
,
J. A.
,
Graner
,
F.
, and
Jiang
,
Y.
, 2003, “
A Texture Tensor to Quantify Deformations: The Example of Two-Dimensional Flowing Foams
,”
Granular Matter
1434-5021,
5
, pp.
71
74
.
5.
Kraynik
,
A. M.
,
Reinelt
,
D. A.
, and
van Swol
,
F.
, 2003, “
Structure of Random Monodisperse Foams
,”
Phys. Rev. E
1063-651X,
67
, p.
031403
.
6.
Kraynik
,
A. M.
,
Reinelt
,
D. A.
, and
van Swol
,
F.
, 2004, “
Structure of Random Foams
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
208301
.
7.
Kraynik
,
A. M.
,
Reinelt
,
D. A.
, and
van Swol
,
F.
, 2005, “
Structure of Random Bidisperse Foams
,”
Colloids Surf., A
0927-7757,
263
, pp.
11
17
.
8.
Kraynik
,
A. M.
, and
Reinelt
,
D. A.
, 1996, “
Linear Elastic Behaviour of Dry Soap Films
,”
J. Colloid Interface Sci.
0021-9797,
181
, pp.
511
520
.
9.
Princen
,
H. M.
, 1983, “
Rheology of Foams and Highly Concentrated Emulsions
,”
J. Colloid Interface Sci.
0021-9797,
91
, pp.
160
175
.
10.
Kruyt
,
N. P.
, and
Rothenburg
,
L.
, 1996, “
Micromechanical Definition of the Strain Tensor for Granular Materials
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
63
, pp.
706
711
.
11.
Kruyt
,
N. P.
, and
Rothenburg
,
L.
, 2002, “
Micromechanical Bounds for the Elastic Moduli of Granular Materials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
311
324
.
12.
Agnolin
,
I.
,
Jenkins
,
J. T.
, and
La Ragione
,
L.
, 2006, “
A Continuum Theory for a Random Array of Identical, Elastic, Frictional Disks
,”
Mech. Mater.
0167-6636,
38
, pp.
687
701
.
13.
Jenkins
,
J. T.
,
Johnson
,
D.
,
La Ragione
,
L.
, and
Makse
,
H.
, 2005, “
Fluctuations and the Effective Moduli of an Isotropic, Random Aggregate of Identical, Frictionless Spheres
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
197
225
.
14.
Khan
,
S. A.
, and
Armstrong
,
R. C.
, 1986, “
The Rheology of Foams: Theory for Dry Foams
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
22
, pp.
1
22
.
15.
Cambou
,
B.
, 1993, “
From Global to Local Variables in Granular Materials
,”
Powders & Grains 93
,
C.
Thornton
, ed.
Balkema
,
Rotterdam, The Netherlands
, pp.
73
86
.
16.
Kruyt
,
N. P.
, and
Rothenburg
,
L.
, 2004, “
Kinematic and Static Assumptions for Homogenization in Micromechanics of Granular Materials
,”
Mech. Mater.
0167-6636,
36
, pp.
1157
1173
.
17.
Drescher
,
A.
, and
Josselin de Jong
,
G.
, 1972, “
Photoelastic Verification of a Mechanical Model for the Flow of a Granular Materials
,”
J. Mech. Phys. Solids
0022-5096,
20
, pp.
337
351
.
18.
Kruyt
,
N. P.
, 2003, “
Statics and Kinematics of Discrete Cosserat-Type Granular Materials
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
511
534
.
19.
Bagi
,
K.
, 1996, “
Stress and Strain in Granular Assemblies
,”
Mech. Mater.
0167-6636,
22
, pp.
165
177
.
20.
Bagi
,
K.
, 1999, “
Microstructural Stress Tensor of Granular Assemblies With Volume Forces
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
66
, pp.
934
936
.
21.
Aubouy
,
M.
,
Jiang
,
Y.
,
Glazier
,
J. A.
, and
Graner
,
F.
, 2003, “
A Texture Tensor to Quantify Deformations
,”
Granular Matter
1434-5021,
5
, pp.
67
70
.
22.
Goldenberg
,
C.
, and
Goldhirsch
,
I.
, 2006, “
Continuum Mechanics for Small Systems and Fine Resolutions
,”
Handbook of Theoretical and Computational Nanotechnology
,
M.
Rieth
and
W.
Schommers
, eds.,
American Scientific
,
Stevenson Ranch, CA
, Vol.
4
, pp.
329
386
.
23.
Bagi
,
K.
, 2006, “
Analysis of Microstructural Strain Tensors for Granular Assemblies
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3166
3184
.
24.
Stamenovic
,
D.
, 1991, “
The Shear Modulus of Foamlike Structures
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
58
, pp.
288
289
.
25.
Graner
,
F.
,
Jiang
,
Y.
,
Janiaud
,
E.
, and
Flament
,
C.
, 2001, “
Equilibrium States and Ground State of Two-Dimensional Fluid Foams
,”
Phys. Rev. E
1063-651X,
63
, pp.
011402
.
26.
Beran
,
M. J.
, 1968,
Statistical Continuum Theories
,
Interscience Publishers
,
New York
.
27.
Torquato
,
S.
, 2002,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer
,
Berlin
.
28.
Graner
,
F.
, 2005, personal communication.
29.
Horne
,
M. R.
, 1965, “
The Behaviour of an Assembly of Rotound, Rigid, Cohesionless Particles, I and II
,”
Proc. R. Soc. London, Ser. A
1364-5021,
286
, pp.
62
97
.
30.
Cox
,
S. J.
, 2005, personal communication.
31.
Brakke
,
K.
, 1992, “
The Surface Evolver
,”
Exp. Math.
1058-6458,
1
, pp.
141
165
;
You do not currently have access to this content.