A fracture parameter Mc is proposed for evaluation of the surface energy associated with the creation of multiple curved cracks in 2D rubbery solids under the action of large deformation. Based on the concept of the M-integral, the parameter is developed by performing the integration along a closed contour enclosing all the cracks and with respect to a reference coordinate system originated at the geometric center of all the crack tips. The integration is shown to be path-independent so that the complicated singular stress field in the near-tip areas need not be involved in the calculation. It is thus suggested that Mc be possibly used as a fracture parameter for describing the degradation of material and∕or structural integrity caused by irreversible evolution of multiple curved cracks in a rubbery media.

1.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
, 1983, “
The Incipient Characteristic Tearing Energy for an Elastomer Crosslinked Under Strain
,”
J. Polym. Sci., Polym. Phys. Ed.
0098-1273,
21
, pp.
1807
1814
.
2.
Pidaparti
,
R. M. V.
,
Yang
,
T. Y.
, and
Soedel
,
W.
, 1989, “
A Plane Stress Finite Element Method for the Prediction of Rubber Fracture
,”
Int. J. Fract.
0376-9429,
39
(
4
), pp.
255
268
.
3.
Chang
,
J. H.
, and
Yeh
,
J. B.
, 1998, “
Calculation of J2-Integral due to a 2D Crack in Rubbery Materials
,”
Eng. Fract. Mech.
0013-7944,
59
(
5
), pp.
683
695
.
4.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1972, “
On a Class of Conservation Laws in Linearized and Finite Elastostatics
,”
Arch. Ration. Mech. Anal.
0003-9527,
44
, pp.
187
211
.
5.
Budiansky
,
B.
, and
Rice
,
J. R.
, 1973, “
Conservation Laws and Energy-Release Rates
,”
ASME J. Appl. Mech.
0021-8936,
40
, pp.
201
203
.
6.
Eshelby
,
J. D.
, 1974, “
Calculation of Energy Release Rate
,”
Prospects Fracture Mechanics
,
G. C.
Sih
,
H. C.
Van Elst
, and
P.
Broek
, eds.,
Noordhoff
,
Groningen
, pp.
69
84
.
7.
Freund
,
L. B.
, 1978, “
Stress-Intensity Factor Calculations Based on a Conservation Integral
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
241
250
.
8.
Herrmann
,
A. G.
, and
Herrmann
,
G.
, 1981, “
On Energy Release Rates for a Plane Crack
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
525
528
.
9.
Eischen
,
J. W.
, and
Herrmann
,
G.
, 1987, “
Energy Release Rates and Related Balance Laws in Linear Elastic Defect Mechanics
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
388
392
.
10.
Seed
,
G. M.
, 1997, “
The Boussinesq Wedge and the Jk, L, and M Integrals
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
20
(
6
), pp.
907
916
.
11.
Chen
,
Y. H.
, 2001, “
M-integral Analysis for Two-Dimensional Solids With Strongly Interacting Microcracks. Part I: in an infinite brittle solid
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3193
3212
.
12.
Wang
,
D. F.
, and
Chen
,
Y. H.
, 2002, “
M-Integral Analysis for a Two-Dimensional Metal∕Ceramic Bimaterial Solid With Extending Subinterface Microcracks
,”
Arch. Appl. Mech.
0939-1533,
72
, pp.
588
598
.
13.
Tian
,
W. Y.
, 2004, “
Microcracking Damage Analysis in Piezoelectric Bimaterial Solids
,”
Int. J. Fatigue
0142-1123,
26
(
8
), pp.
873
888
.
14.
Chang
,
J. H.
, and
Chien
,
A. J.
, 2002, “
Evaluation of M-Integral for Anisotropic Elastic Media with Multiple Defects
,”
Int. J. Fract.
0376-9429,
114
(
3
), pp.
267
289
.
15.
Chang
,
J. H.
, and
Wu
,
W. H.
, 2005, “
Evaluation of Surface Energy Associated with Formation of Multiple Kinked Cracks in Anisotropic Elastic Solids
” (in preparation).
16.
Chang
,
J. H.
, and
Peng
,
D. J.
, 2004, “
On the Use of M-Integral for Rubbery Material Problems Containing Multiple Defects
,” ASCE
J. Eng. Mech.
0733-9399,
130
(
5
), pp.
589
598
.
17.
Marusak
,
R. E.
, 1988, “
Determining the Parameters of Elastic Strain Energy Functions
.” Master thesis, Univ. of Texas at Austin, USA.
18.
Oden
,
J. T.
, and
Carey
,
G. F.
, 1983,
Finite elements IV: Mathematical aspects
,
Prentice-Hall
,
Englewood Cliffs, New Jersey
.
You do not currently have access to this content.