Abstract

The problem of an isotropic annular plate clamped along one edge and free at the other and subjected to a concentrated load is solved by a series approximation. The continuity conditions of deflection, slope, shear and radial moments at the radius of load application are satisfied. Variations of deflection coefficient, radial moment coefficients and shear coefficients with radius and angle are presented.

1.
Conway
,
H. D.
, 1948,
J. Appl. Mech.
0021-8936,
15
, pp.
1
5
.
2.
Sherbourne
,
A. N.
, and
Murthy
,
D. N. S.
, 1970, “
Elastic Bending of Anisotropic Circular Plates of Variable Thickness
,”
Int. J. Mech. Sci.
0020-7403,
12
, pp.
1023
1035
.
3.
Minguez
,
J. M.
, and
Vogwell
,
J.
, 1998, “
Plates With Holes Under Lateral Load Pressure
,”
Eng. Failure Anal.
1350-6307,
5
(
4
), pp.
299
315
.
4.
Lord
,
H. W.
, and
Yousef
,
S. S.
, 1970, “
Elastic Bending of Circular Plates of Variable Thickness: An Analytical and Experimental Study
,”
Int. J. Mech. Sci.
0020-7403,
12
, pp.
417
434
.
5.
Bird
,
M. D.
, and
Steele
,
C. R.
, 1991, “
Separated Solution Procedure for Bending of Circular With Circular Holes
,”
Appl. Mech. Rev.
0003-6900,
44
, pp.
27
35
.
6.
Sharafutdinov
,
G. Z.
, 2004, “
Stress and Concentrated Forces in Thin Annular Plates
,”
J. Appl. Math. Mech.
0021-8928,
68
, pp.
39
51
.
7.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
,
McGraw–Hill
, New York, p.
206
.
8.
Clebsch
,
A.
, 1862, “
Theorie der Elasticitat Fester Korper
.”
9.
Chen
,
J. T.
,
Wu
,
C. S.
,
Chen
,
K. H.
, and
Lee
,
Y. T.
, 2005, “
Degenerate Scale for the Analysis of Circular Thin Plate Using the Boundary Integral Equation Method and Boundary Element Methods
,”
Comput. Math. Appl.
0898-1221 (to be published).
10.
Sen Gupta
,
A. M.
, 1952, “
Bending of a Cylindrically Aeolotropic Circular Plate With Eccentric Load
,”
J. Appl. Mech.
0021-8936,
19
(
1
), pp.
9
12
.
11.
Carrier
,
G. F.
, 1944, “
The Bending of the Cylindrically Aeolotropic Plate
,”
J. Appl. Mech.
0021-8936,
11
(
3
), pp.
A129
–A133.
12.
Carrier
,
G. F.
, 1943, “
Stress Distributions in Cylindrically Aeolotropic Plates
,”
Trans. ASME
0097-6822,
65
, pp.
A117
A122
.
13.
Chen
,
J. T.
,
Wu
,
C. S.
, and
Lee
,
Y. T.
, 2005, “
On the Equivalence of the Trefftz Method and Method of Fundamental Solutions for Laplace and Biharmonic Equations
,”
Comput. Math. Appl.
0898-1221 (to be published).
14.
Mathematica, 2004, “
A System of Doing Mathematics by Computer
,” Version 5.0.
You do not currently have access to this content.