Minimum energy paths for unit advancement of a crack front are determined by reaction pathway sampling, thus providing the reaction coordinates for the analysis of crack tip mechanics in ductile and brittle materials. We compare results on activation energy barrier and atomic displacement distributions for an atomically sharp crack in Cu, where one observes the emission of a partial dislocation loop, and in Si, where crack front extension evolves in a kink-like fashion.

1.
Buehler
,
M. J.
,
Abraham
,
F. F.
, and
Gao
,
H.
, 2003, “
Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale
,”
Nature (London)
0028-0836,
426
, pp.
141
146
.
2.
Jonsson
,
H.
,
Mills
,
G.
, and
Jacobsen
,
K. W.
, 1998, “
Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions
,” in
Classical and Quantum Dynamics in Condensed Phase Simulations
, Edited by
Berne
,
B. J.
,
Ciccotti
,
G.
, and
Coker
,
D. F.
, pp.
385
404
,
World Scientific
, Sinapore.
3.
Zhu
,
T.
,
Li
,
J.
, and
Yip
,
S.
, 2004, “
Atomistic Study of Dislocation Loop Emission From a Crack Tip
,”
Phys. Rev. Lett.
0031-9007,
93
,
025503
.
4.
Zhu
,
T.
,
Li
,
J.
, and
Yip
,
S.
, 2004, “
Atomic Configurations and Energetics of Crack Extension in Silicon
,”
Phys. Rev. Lett.
0031-9007,
93
,
205504
.
5.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantaopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
, 2001, “
Structural Stability and Lattice Defects in Copper: Ab initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B
0163-1829,
63
,
224106
.
6.
Stillinger
,
F. H.
, and
Weber
,
T. A.
, 1985, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
0163-1829,
31
, pp.
5262
5271
.
7.
Rice
,
J. R.
, 1992, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
239
271
.
8.
Xu
,
G.
,
Argon
,
A. S.
, and
Ortiz
,
M.
, 1997, “
Critical Configurations for Dislocation Nucleation From Crack Tips
,”
Philos. Mag. A
0141-8610,
75
, pp.
341
367
.
9.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
7
, pp.
625
646
.
10.
Thomson
,
R.
,
Hsieh
,
C.
, and
Rana
,
V.
, 1971, “
Lattice Trapping of Fracture Cracks
,”
J. Appl. Phys.
0021-8979,
42
, pp.
3145
3160
.
11.
Lii
,
M. J.
,
Chen
,
X. F.
,
Katz
,
Y.
, and
Gerberich
,
W. W.
, 1990, “
Dislocation Modeling and Acoustic-Mission Observation of Alternating Ductile∕Brittle Events in Fe‐3wt% Si Crystals
,”
Acta Metall. Mater.
0956-7151,
38
, pp.
2435
2453
.
12.
Cai
,
W.
,
Bulatov
,
V. V.
,
Chang
,
J.
,
Li
,
J.
, and
Yip
,
S.
, 2004, “
Dislocation Core Effects on Mobility
,” in
Dislocations in Solids
, edited by
Nabarro
,
F. R. N.
, and
Hirth
,
J. P.
(eds),
Elsevier
, Amsterdam, Vol.
12
, Chap. 64, pp.
1
80
.
13.
Ogata
,
S.
,
Li
,
J.
,
Hirosaki
,
N.
,
Shibutani
,
Y.
, and
Yip
,
S.
, 2004, “
Ideal Shear Strain of Metals and Ceramics
,”
Phys. Rev. B
0163-1829,
70
, pp.
104104
.
You do not currently have access to this content.