The material and geometrical nonlinearities of novel dielectric elastomer actuators make them more difficult to model than linear materials used in traditional actuators. To accurately model dielectric elastomers, a comprehensive mathematical formulation that incorporates large deformations, material nonlinearity, and electrical effects is derived using Maxwell-Faraday electrostatics and nonlinear elasticity. The analytical model is used to numerically solve for the resultant behavior of an inflatable dielectric elastomer membrane, subject to changes in various system parameters such as prestrain, external pressure, applied voltage, and the percentage electroded membrane area. The model can be used to predict acceptable ranges of motion for prescribed system specifications. The predicted trends are qualitatively supported by experimental work on fluid pumps [A. Tews, K. Pope, and A. Snyder, Proceedings SPIE, 2003)]. For a potential cardiac pump application, it is envisioned that the active dielectric elastomer membrane will function as the motive element of the device.

1.
Tews
,
A.
,
Pope
,
K.
, and
Snyder
,
A.
, 2003, “
Pressure-Volume Characteristics of Dielectric Elastomer Diaphragms
,” presented at
Proceedings SPIE Smart Structures and Materials: Electroactive Polymers and Devices
,
San Diego
.
2.
Lubeck
,
D. P.
, and
Bunker
,
J. P.
, 1982, Case Study #9: “
The Artificial Heart: Costs, Risks, and Benefits
,”
The Implications of Cost-Effectiveness Analysis of Medical Technologies
, Background Paper No. 2 “
Case Studies of Medical Technologies
,” U.S. Government Printing Office, National Heart, Lung and Blood Institute, Morbidity and Mortality Chartbook, Washington, DC.
3.
Ungluab
,
S. D.
, 1998,
Human Physiology an Integrated Approach
,
Prentice Hall
, New Jersey.
4.
Pelrine
,
R.
,
Kornbluh
,
R.
, and
Joseph
,
J.
, 1998, “
Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators, A
0924-4247,
64
, pp.
77
85
.
5.
Kofod
,
G.
, 2001, “
Dielectric Elastomer Actuators
,” in
Chemistry
, The Technical University of Denmark, Denmark.
6.
Wolfson
,
R.
, and
Pasachoff
,
J. M.
, 1999,
Physics with Modern Physics for Scientists and Engineers
,
Addison-Wesley
, Reading.
7.
Toupin
,
R. A.
, 1956, “
The Elastic Dielectric
,”
Journal of Rational Mechanics and Analysis
,
5
, pp.
850
915
.
8.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1984,
Electrodynamics of Continuous Media
,
Butterworth-Heinemann
, Oxford.
9.
Jackson
,
J. D.
, 1962,
Classical Electro-Dynamics
,
Wiley
, New York.
10.
Schwinger
,
J.
,
DeRaad
,
L.
,
Milton
,
K.
, and
Tsai
,
W.
, 1998,
Classical Electrodynamics
,
Perseus Books
, Reading.
11.
Maxwell
,
J. C.
, 1954,
A Treatise on Electricity and Magnetism
,
Dover
, Oxford.
12.
Eringen
,
A. C.
, 1962,
Nonlinear Theory of Contiuous Media
,
McGraw-Hill
, New York.
13.
Adkins
,
J. E.
, and
Rivlin
,
R. S.
, 1952, “
Large Elastic Deformations of Isotropic Materials IX The Deformation of Thin Shells
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
244
, pp.
505
531
.
14.
Green
,
A. E.
, and
Zerna
,
W.
, 1968,
Theoretical Elasticity
,
Clarendon Press
, Oxford.
15.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1970,
Large Elastic Deformations
,
Oxford University Press
, London.
16.
Rivlin
,
R. S.
, 1947–52, “
Large Elastic Deformations of Isotropic Materials I-IX
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
240
244
.
17.
Treloar
,
R. G.
, 1974, “
The Mechanics of Rubber Elasticity
,”
J. Polym. Sci., Polym. Symp.
0360-8905,
48
, pp.
107
123
.
18.
Ogden
,
R. W.
, 1972, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
326
, pp.
565
584
.
19.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
, 1951, “
Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Defromation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
243
, pp.
251
288
.
You do not currently have access to this content.