The charge distribution on the surface of a biased conductive, finite-length, cylindrical nanotube, free standing above an infinite grounded plane, is investigated. The diameter range of the cylinder tube under study is 20–60 nm, which is much larger than the screening length, meaning the quantum and statistical effects on the charge distribution are negligible. The relationship between the charge distribution and the geometry of the nanotube is examined in detail by classical electrostatics using full three-dimensional numerical simulations based on the boundary element method. A model of the concentrated charge at the end of nanotubes is proposed. The charge distribution for a clamped cantilever nanotube is also computed and discussed. The findings here reported are of particular usefulness in the design and modeling of electrostatic actuated nanotube/nanowire based nano-electromechanical systems.

1.
Akita
S.
,
Nakayama
Y.
,
Mizooka
S.
,
Takano
Y.
,
Okawa
T.
,
Miyatake
Y.
,
Yamanaka
S.
,
Tsuji
M.
, and
Nosaka
T.
,
2001
, “
Nanotweezers Consisting of Carbon Nanotubes Operating in an Atomic Force Microscope
,”
Appl. Phys. Lett.
,
79
, pp.
1691
1693
.
2.
Kim
P.
, and
Lieber
C. M.
,
1999
, “
Nanotube Nanotweezers
,”
Science
,
126
, pp.
2148
2150
.
3.
Rueckes
T.
,
Kim
K.
,
Joslevich
E.
,
Tseng
G. Y.
,
Cheung
C.
, and
Lieber
C. M.
,
2000
, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
,
289
, pp.
94
97
.
4.
Kinaret
J.
,
Nord
T.
, and
Viefers
S.
,
2003
, “
A Carbon-Nanotube-Based Nanorelay
,”
Appl. Phys. Lett.
,
82
, pp.
1287
1289
.
5.
Fennlmore
M.
,
Yuzvlnsky
T. D.
,
Han
W. Q.
,
Fuhrer
M. S.
,
Cummings
J.
, and
Zettl
A.
,
2003
, “
Rotational Actuator Based on Carbon Nanotubes
,”
Nature (London)
,
424
, pp.
408
410
.
6.
Ke
C.-H.
, and
Espinosa
H. D
,
2004
, “
Feedback Controlled Nanocantilever NEMS Device
,”
Appl. Phys. Lett.
,
85
, pp.
681
683
.
7.
Husain
A.
,
Hone
J.
,
Postma
H. W. Ch.
,
Huang
X. M. H.
,
Drake
T.
,
Barbic
M.
,
Scherer
A.
, and
Roukes
M. L.
,
2003
, “
Nanowire-Based Very-High-Frequency Electro–Mechanical Resonator
,”
Appl. Phys. Lett.
,
83
, pp.
1240
1242
.
8.
Ziegler
K. J.
,
Lyons
D. M.
,
Holmes
J. D.
,
Erts
D.
,
Polyakov
B.
,
Olin
H.
,
Svensson
K.
, and
Olsson
E.
,
2004
, “
Bistable Nanoelectromechanical Devices
,”
Appl. Phys. Lett.
,
84
, pp.
4074
4076
.
9.
Dequesnes
M.
,
Rotkin
S. V.
, and
Aluru
N. R.
,
2002
, “
Calculation of Pull-in Voltage for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
,
13
, pp.
120
131
.
10.
Lou
L.
,
Nordlander
P.
, and
Smalley
R. E.
,
1995
, “
Fullerene Nanotube in Electric Fields
,”
Phys. Rev. B
,
52
, pp.
1429
1432
.
11.
Krcmar
M.
,
Saslow
W. M.
, and
Zangwill
A.
,
2003
, “
Electrostatic of Conducting Nanocylinder
,”
J. Appl. Phys.
,
93
, pp.
3495
3500
.
12.
Bulashevich
K. A.
, and
Rotkin
S. V.
,
2002
, “
Nanotube Devices: A Microscopic Model
,”
JETP Lett.
,
75
, pp.
205
209
.
13.
Rotkin
S. V.
,
Shrivastava
V.
,
Bulashevich
K. A.
, and
Aluru
N. R.
, “
Atomic Capacitance of a Nanotube Electrostatic Device
,”
2002
,
Int. J. Nanosci.
,
1
, pp.
337
346
.
14.
Keblinski
P.
,
Nayak
S. K.
,
Zapol
P.
, and
Ajayan
P. M.
,
2002
, “
Charge Distribution and Stability of Charged Carbon Nanotube
,”
Phys. Rev. Lett.
,
89
,
255503
255503
.
15.
Hayt
W.
, and
Buck
J.
,
2001
, Engineering Electromagnetics, 6th ed. McGraw–Hill, New York.
16.
Ke
C.-H.
,
Espinosa
H. D.
, and
Pugno
N.
,
2005
, “
Numerical Analysis of Nanotube Based NEMS Devices—Part II: Role of Finite Kinematics, Stretching and Charge Concentration
,”
ASME J. Appl. Mech.
,
72
, pp.
726
731
.
This content is only available via PDF.
You do not currently have access to this content.