The fractional derivative has been occurring in many physical problems, such as frequency-dependent damping behavior of materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions for viscoelastic materials, the PIλDμ controller for the control of dynamical systems, etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, and materials science are also described by differential equations of fractional order. The solution of the differential equation containing a fractional derivative is much involved. Instead of an application of the existing methods, an attempt has been made in the present analysis to obtain the solution of an equation in a dynamic system whose damping behavior is described by a fractional derivative of order 1/2 by the relatively new Adomian decomposition method. The results obtained by this method are then graphically represented and compared with those available in the work of Suarez and Shokooh [Suarez, L. E., and Shokooh, A., 1997, “An Eigenvector Expansion Method for the Solution of Motion Containing Fraction Derivatives,” ASME J. Appl. Mech., 64, pp. 629–635]. A good agreement of the results is observed.

1.
Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic, New York.
2.
Miller, K. S., and Ross, B., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York.
3.
Podlubny, I., 1999, Fractional Differential Equations, Academic Press, San Diego.
4.
Diethelm
,
K.
,
1997
, “
An Algorithm for the Numerical Solution of Differential Equations of Fractional Order
,”
Elec. Transact. Numer. Anal.
,
5
, pp.
1
6
.
5.
Diethelm, K., and Freed, A. D., 1999, “The FracPECE Subroutine for the Numerical Solution of Differential Equations of Fractional Order,” No. 52 in GWDG-Berichte, Forschung und wissenschaftliches Rechnen: Beitra¨ge zum Heinz-Billing-Preis 1998, S. Heinzel and T. Plesser, eds., Gesellschaft fu¨r wissenschaftliche Datenverarbeitung, Go¨ttingen, pp. 57–71.
6.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2002
, “
Analysis of Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
265
, pp.
229
248
.
7.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.
8.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2002
, “
Numerical Solution of the Bagley-Torvik Equation
,”
Bit Numer. Math.
,
42
(
3
), pp.
490
507
.
9.
Diethelm, K., and Ford, A. D., 1999, “On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity,” Scientific Computing in Chemical Engineering II. Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties, F. Keil, W. Mackens, H. Voß, and J. Werther, eds., Springer-Verlag, Heidelberg, pp. 217–224.
10.
Diethelm, K., and Ford, N. J., 2001, “The Numerical Solution of Linear and Nonlinear Fractional Differential Equations Involving Fractional Derivatives of Several Orders,” Numerical Analysis Report No. 379, Manchester Center for Computational Mathematics, Manchester, England.
11.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
12.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus-A Different Approach to the Analysis Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
13.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
(
6
), pp.
918
925
.
14.
Koeller
,
R. C.
,
1984
, “
Application of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
, pp.
299
307
.
15.
Mbodje, B., Montseny, C., Audounet, J., and Benchimol, P., 1994, “Optimal Control for Fractionally Damped Flexible Systems,” The Proceedings of the Third IEEE Conference on Control Applications, August 24–26, The University of Strathclyde, Glasgow, pp. 1329–1333.
16.
Makris
,
N.
, and
Constaninou
,
M. C.
,
1991
, “
Fractional Derivative Maxwell Model for Viscous Dampers
,”
J. Struct. Eng.
,
117
(
9
), pp.
2708
2724
.
17.
Shen
,
K. L.
, and
Soong
,
T. T.
,
1995
, “
Modeling of Viscoelastic Dampers for Structural Applications
,”
J. Eng. Mech.
,
121
, pp.
694
701
.
18.
Pritz
,
T.
,
1996
, “
Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.
,
195
, pp.
103
115
.
19.
Papoulia
,
K. D.
, and
Kelly
,
J. M.
,
1997
, “
Visco-Hyperelastic Model for Filled Rubbers Used in Vibration Isolation
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
292
297
.
20.
Shokooh, A., and Suarez, L., 1994, “On the Fractional Derivative Modeling of Damping Materials,” Technical Report presented for NASA Langley, College of Engineering, University of Puerto Rica, Mayaguez, PR.
21.
Suarez
,
L. E.
, and
Shokooh
,
A.
,
1995
, “
Response of Systems With Damping Materials Modeled Using Fractional Calculus
,”
ASME J. Appl. Mech. Rev.
,
48
(11), Part 2, pp.
S118–S127
S118–S127
.
22.
Suarez, L., Shokooh, A., and Arroyo, J., 1995, “Finite Element Analysis of Damping Materials Modeled by the Fractional Derivative Method,” Technical Report presented for NASA Langley, College of Engineering, University of Puerto Rico, Mayaguez, PR.
23.
Gaul
,
L.
,
Klein
,
P.
, and
Kemple
,
S.
,
1989
, “
Impulse Response Function of an Oscillator With Fractional Derivative in Damping Description
,”
Mech. Res. Commun.
,
16
(
5
), pp.
297
305
.
24.
Gaul
,
L.
,
Klein
,
P.
, and
Kemple
,
S.
,
1991
, “
Damping Description Involving Fractional Operators
,”
Mech. Syst. Signal Process.
,
5
(
2
), pp.
8
88
.
25.
Koh
,
C. G.
, and
Kelly
,
J. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
, pp.
229
241
.
26.
Padovan
,
J.
,
1987
, “
Computational Algorithms for Finite Element Formulation Involving Fractional Operators
,”
Comput. Mech.
,
2
, pp.
271
287
.
27.
Suarez
,
L. E.
, and
Shokooh
,
A.
,
1997
, “
An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives
,”
ASME J. Appl. Mech.
,
64
, pp.
629
635
.
28.
Adomian, G., 1989, Nonlinear Stochastic Systems Theory and Applications to Physics, Kluwer Academic, Netherlands.
29.
Adomian, G., 1994, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Boston.
30.
Adomian
,
G.
,
1991
, “
An Analytical Solution of the Stochastic Navier-Stokes System
,”
Found. Phys.
,
21
(
7
), pp.
831
843
.
31.
Adomian
,
G.
, and
Rach
,
R.
,
1991
, “
Linear and Nonlinear Schro¨dinger Equations
,”
Found. Phys.
,
21
, pp.
983
991
.
32.
Adomian
,
G.
,
1994
, “
Solution of Physical Problems by Decomposition
,”
Comput. Math. Appl.
,
27
, Nos.
9/10
, pp.
145
154
.
33.
Adomian
,
G.
,
1998
, “
Solutions of Nonlinear P.D.E.
,”
Appl. Math. Lett.
,
11
(
3
), pp.
121
123
.
34.
Abbaoui
,
K.
, and
Cherruault
,
Y.
,
1999
, “
The Decomposition Method Applied to the Cauchy Problem
,”
Kybernetes
,
28
(
1
), pp.
68
74
.
35.
Kaya
,
D.
, and
Yokus
,
A.
,
2002
, “
A Numerical Comparison of Partial Solutions in the Decomposition Method for Linear and Nonlinear Partial Differential Equations
,”
Math. Comput. Simul.
,
60
(
6
), pp.
507
512
.
36.
Wazwaz
,
A.
,
1999
, “
A Reliable Modification of Adomian Decomposition Method
,”
Appl. Math. Comput.
,
102
(
1
), pp.
77
86
.
37.
Kaya
,
D.
, and
El-Sayed
,
S. M.
,
2003
, “
On a Generalized Fifth Order KdV Equations
,”
Phys. Lett. A
,
310
(
1
), pp.
44
51
.
38.
Kaya
,
D.
, and
El-Sayed
,
S. M.
,
2003
, “
An Application of the Decomposition Method for the Generalized KdV and RLW Equations
,”
Chaos, Solitons Fractals
, ,
17
(
5
), pp.
869
877
.
39.
Kaya
,
D.
,
2003
, “
An Explicit and Numerical Solutions of Some Fifth-Order KdV Equation by Decomposition Method
,”
Appl. Math. Comput.
,
144
(
2/3
), pp.
353
363
.
40.
Kaya
,
D.
,
2004
, “
A Numerical Simulation of Solitary-Wave Solutions of the Generalized Regularized Long-Wave Equation
,”
Appl. Math. Comput.
,
149
(
3
), pp.
833
841
.
41.
George
,
A. J.
, and
Chakrabarti
,
A.
,
1995
, “
The Adomian Method Applied to Some Extraordinary Differential Equations
,”
Appl. Math. Lett.
,
8
(3), pp.
91
97
.
42.
Arora
,
H. L.
, and
Abdelwahid
,
F. I.
,
1993
, “
Solutions of Non-Integer Order Differential Equations Via the Adomian Decomposition Method
,”
Appl. Math. Lett.
,
6
(
1
), pp.
21
23
.
43.
Shawagfeh
,
N. T.
,
1999
, “
The Decomposition Method for Fractional Differential Equations
,”
J. Fractional Calculus
,
16
, pp.
27
33
.
44.
Shawagfeh
,
N. T.
,
2002
, “
Analytical Approximate Solutions for Nonlinear Fractional Differential Equations
,”
Appl. Math. Comput.
,
131
, pp.
517
529
.
45.
Saha Ray
,
S.
, and
Bera
,
R. K.
,
2004
, “
Solution of an Extraordinary Differential Equation by Adomian Decomposition Method
,”
J. Appl. Math.
,
4
, pp.
331
338
.
46.
Seng
,
V.
,
Abbaoui
,
K.
, and
Cherruault
,
Y.
,
1996
, “
Adomian’s Polynomials for Nonlinear Operators
,”
Math. Comput. Modell.
,
24
(
1
), pp.
59
65
.
47.
Abdelwahid
,
F.
,
2003
, “
A Mathematical Model of Adomian Polynomials
,”
Appl. Math. Comput.
,
141
, pp.
447
453
.
48.
Cherruault
,
Y.
,
1989
, “
Convergence of Adomian’s Method
,”
Kybernetes
,
18
(
2
), pp.
31
38
.
49.
Abbaoui
,
K.
, and
Cherruault
,
Y.
,
1994
, “
Convergence of Adomian’s Method Applied to Differential Equations
,”
Comput. Math. Appl.
,
28
(
5
), pp.
103
109
.
50.
Abbaoui
,
K.
, and
Cherruault
,
Y.
,
1995
, “
New Ideas for Proving Convergence of Decomposition Methods
,”
Comput. Math. Appl.
,
29
, pp.
103
108
.
51.
Himoun
,
N.
,
Abbaoui
,
K.
, and
Cherruault
,
Y.
,
1999
, “
New Results of Convergence of Adomian’s Method
,”
Kybernetes
,
28
(
4
), pp.
423
429
.
52.
Lorenzo, C. F., and Hartley, T. T., 1998, “Initialisation Conceptualization, and Application in the Generalized Fractional Calculus,” TM 1998-208415, NASA, NASA Center for Aerospace Information, 7121 Stadard Drive, Hanover, MD 21076.
53.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2000
, “
Initialised Fractional Calculus
,”
Int. J. Appl. Math.
,
3
(
3
), pp.
249
265
.
54.
Lorenzo, C. F., and Hartley, T. T., 2001, “Initialization in Fractional Order Systems,” Proceedings of the European Control Conference, Porto, Portugal, pp. 1471–1476.
You do not currently have access to this content.