This paper presents the development of a theoretical damage mechanics model applicable to random short glass fiber reinforced composites. This model is based on a macroscopic approach using internal variables together with a thermodynamic potential expressed in the stress space. Induced anisotropic damage, nonsymmetric tensile/compressive behavior (unilateral effect) and residual effects (permanent strain) are taken into account. The anisotropic damage is represented with second-order tensorial internal variables D. The unilateral effect due to microcrack closure in compression is introduced by generalizing the hypothesis of the complementary elastic energy equivalence. In the case of the permanent strain, a new term related to frozen energy, which is a function of the damage variable, the stress tensor, and some materials constants to be identified, is added to the basic thermodynamic potential. Using laboratory test results, parameter identification has been performed to illustrate the applicability of the proposed model.

1.
Pense´e
,
V.
, and
Kondo
,
D.
,
2001
, “
Une Analyse Microme´canique 3-D de l’Endommagement par Me´sofissuration
,”
C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron.
,
329
, pp.
271
276
.
2.
Lu
,
T. J.
, and
Chow
,
C. L.
,
1990
, “
On Constitutive Equations of Inelastic Solids with Anisotropic Damage
,”
Theor. Appl. Fract. Mech.
,
14
, pp.
187
218
.
3.
Lemaı^tre
,
J.
,
Desmorat
,
R.
, and
Sauzay
,
M.
,
1999
, “
Loi d’E´volution de l’Endommagement Anisotrope
,”
C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron.
,
327
, pp.
1231
1236
.
4.
Halm, D., 1997, “Contribution a` la Mode´lisation du Comportement Unilate´ral et du Frottement Dans les Mate´riaux Me´sofissure´s,” PhD thesis, E`cole Nationale Supe´rieure de Me´canique et d’Ae´rotechnique et Faculte´ des Sciences Fondamentales et Applique´es, France.
5.
Kachanov
,
M.
,
1992
, “
Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts
,”
ASME Appl. Mech. Rev.
,
45
, (
8
), pp.
304
335
.
6.
Dano
,
M. L.
,
Gendron
,
G.
, and
Mir
,
H.
,
2002
, “
Mechanics of Damage and Degradation in Random Short Glass Fiber Reinforced Composites
,”
Journal of Thermoplastic Composite Materials
,
15
, (
2
), pp.
169
177
.
7.
Maillette, F., 2002, “Caracte´risation Expe´rimentale d’un Mate´riau Composite a` Fibres Courtes et Oriente´s Ale´atoirement,” Master’s thesis, Dept of Civil Eng., Laval University, Quebec, Canada.
8.
Dano, M.-L., Maillette, F., Gendron, G., and Bissonnette, B., 2001, “Damage Modelling of Random Short Glass Fibre Reinforced Composites,” Proceeding of the Third Canadian Conference on Composites, Montreal, Canada, pp. 263–270.
9.
Mir, H., 2003, “Contribution a` la Mode´lisation de l’Endommagement des Mate´riaux Composites avec Fibres de Verre Courtes: Anisotropie Induite, Effets Unilate´ral et Re´siduel,” PhD thesis, Department of Civil Engineering, Laval University, Quebec, Canada.
10.
Sidoroff, F., 1981, “Description of Anisotropic Damage Application to Elasticity,” IUTAM Colloquium, Physical Nonlinearities in Structural Analysis, J. Hult, ed., pp. 237–244.
11.
Chen
,
X. F.
, and
Chow
,
C. L.
,
1995
, “
On Damage Strain Energy Release Rate Y
,”
Int. J. Damage Mech.
,
4
, pp.
251
263
.
12.
Ciarlet, P. G., 1982, Introduction a` l’Analyse Nume´rique Matricielle et a` l’Optimization, Masson, Paris.
You do not currently have access to this content.