A mechanical model for low-gravity sloshing in an axisymmetric tank is developed using a newly developed slosh analysis method. In this method, spherical coordinates, whose origin is at the top of the cone that is tangent to the tank at the contact line of the meniscus with the tank wall, are used to analytically determine the characteristic functions for an arbitrary axisymmetric tank for which it is customary to resort to numerical methods. By this means, fast and cost-efficient computation can be conducted. Parameters of the mechanical model are determined such that the frequency responses of the resultant force and moment to lateral excitation coincide with those of the actual sloshing system. Influences of the Bond number and the liquid-filling level on the parameters of the mechanical model are examined.

1.
Abramson, H. N., ed, 1966, “The Dynamic Behavior of Liquids in Moving Containers,” NASA SP-106.
2.
Dodge
,
F. T.
, and
Garza
,
L. R.
,
1967
, “
Experimental and Theoretical Studies of Liquid Sloshing at Simulated Low Gravity
,”
ASME J. Appl. Mech.
,
34
, pp.
555
562
.
3.
Bauer
,
H. F.
, and
Eidel
,
W.
,
1990
, “
Linear Liquid Oscillations in Cylindrical Container Under Zero-Gravity
,”
Appl. Microgravity Technol.
,
2
, pp.
212
220
.
4.
Satterlee, H. M., and Reynolds, W. C., 1964, “The Dynamics of the Free Liquid Surface in Cylindrical Containers Under Strong Capillary and Weak Gravity Conditions,” Technical Report LG-2, Dept. of Mech. Eng., Stanford University, Stanford, CA.
5.
Peterson
,
L. D.
,
Crawley
,
E. F.
, and
Hansman
,
R. J.
,
1989
, “
Nonlinear Fluid Slosh Coupled to the Dynamics of a Spacecraft
,”
AIAA J.
,
27
, pp.
1230
1240
.
6.
Bauer
,
H. F.
, and
Eidel
,
W.
,
1993
, “
Hydroelastic Vibrations in a Circular Cylindrical Container with a Flexible Bottom in Zero-Gravity
,”
J. Fluids Struct.
,
7
, pp.
783
802
.
7.
Tong
,
P.
,
1967
, “
Liquid Motion in a Circular Cylindrical Container With a Flexible Bottom
,”
AIAA J.
,
5
, pp.
1842
1848
.
8.
Hung
,
R. J.
, and
Lee
,
C. C.
,
1992
, “
Similarity Rules in Gravity Jitter-Related Spacecraft Liquid Propellant Slosh Waves Excitation
,”
J. Fluids Struct.
,
6
, pp.
493
522
.
9.
Chu
,
W. H.
,
1970
, “
Low-Gravity Fuel Sloshing in an Arbitrary Axisymmetric Rigid Tank
,”
ASME J. Appl. Mech.
,
37
, pp.
828
837
.
10.
Concus, P., Crane, G. E., and Satterlee, H. M., 1969, “Small Amplitude Lateral Sloshing in Spheroidal Containers Under Low Gravitational Conditions,” NASA CR-72500.
11.
Dodge
,
F. T.
,
Green
,
S. T.
, and
Cruse
,
M. W.
,
1991
, “
Analysis of Small-Amplitude Low Gravity Sloshing in Axisymmetric Tanks
,”
Microgravity Sci. Technol.
,
4
, pp.
228
234
.
12.
Yeh
,
C. K.
,
1967
, “
Free and Forced Oscillations of a Liquid in an Axisymmetric Tank at Low-Gravity Environments
,”
ASME J. Appl. Mech.
,
34
, pp.
23
28
.
13.
Dodge
,
F. T.
, and
Garza
,
L. R.
,
1970
, “
Simulated Low-gravity Sloshing in Spherical, Ellipsoidal, and Cylindrical Tanks
,”
J. Spacecr. Rockets
,
7
, pp.
204
206
.
14.
Coney, T. A., and Salzman, J. A., 1971, “Lateral Sloshing in Oblate Spheroidal Tanks Under Reduced- and Normal-Gravity Conditions,” NASA TN D-6250.
15.
Utsumi
,
M.
,
1998
, “
Low-Gravity Propellant Slosh Analysis Using Spherical Coordinates
,”
J. Fluids Struct.
,
12
, pp.
57
83
.
16.
Utsumi
,
M.
,
2000
, “
Low-gravity Sloshing in an Axisymmetrical Container Excited in the Axial Direction
,”
ASME J. Appl. Mech.
,
67
, pp.
344
354
.
17.
Utsumi
,
M.
,
2000
, “
Development of Mechanical Models for Propellant Sloshing in Teardrop Tanks
,”
J. Spacecr. Rockets
,
37
, pp.
597
603
.
18.
Seliger
,
R. L.
, and
Whitham
,
G. B.
,
1968
, “
Variational Principles in Continuum Mechanics
,”
Proc. R. Soc. London, Ser. A
,
305
, pp.
1
25
.
You do not currently have access to this content.