Nonlinear interaction between elastic wave and contact interface, known to result in the so-called contact acoustic nonlinearity, is examined in a one-dimensional theoretical framework. The present analysis is based on a nonlinear interface stiffness model where the stiffness property of the contact interface is described as a function of the nominal contact pressure. The transmission/reflection coefficients for a normally incident harmonic wave, and the amplitudes of second harmonics as well as DC components arising at the contact interface are derived in terms of the interface stiffness properties and other relevant acoustic parameters. Implications of power-law relations between the linear interface stiffness and the contact pressure are examined in detail regarding the linear and nonlinear acoustic responses of the contact interface. Also, a plausible range of the relevant power-law exponent is provided from considerations based on the rough-surface contact mechanics. The analysis clarifies the qualitative contact-pressure dependence of various nonlinearity parameters based on different definitions. A particular power law is identified from existing experimental data for aluminum-aluminum contact, for which some explicit nonlinear characteristics are demonstrated. The theoretical contact-pressure dependence of the second harmonic generation at the contact interface is found to be in qualitative agreement with previous measurements.

1.
Kendall
,
K.
, and
Tabor
,
D.
,
1971
, “
An Ultrasonic Study of the Area of Contact Between Stationary and Sliding Surfaces
,”
Proc. R. Soc. London, Ser. A
,
323
, pp.
321
340
.
2.
Tattersall
,
H. G.
,
1973
, “
The Ultrasonic Pulse-Echo Technique as Applied to Adhesion Testing
,”
J. Phys. D
,
6
, pp.
819
832
.
3.
Drinkwater
,
B. W.
,
Dwyer-Joyce
,
R. S.
, and
Cawley
,
P.
,
1996
, “
A Study of the Interaction Between Ultrasound and a Partially Contacting Solid-Solid Interface
,”
Proc. R. Soc. London, Ser. A
,
452
, pp.
2613
2628
.
4.
Dwyer-Joyce, R. S., and Drinkwater, B. W., 1998, “Analysis of Contact Pressure Using Ultrasonic Reflection,” Proc. 11th Int. Conf. Experimental Mechanics, Balkema, Rotterdam, pp. 747–753.
5.
Baltazar
,
A.
,
Rokhlin
,
S. I.
, and
Pecorari
,
C.
,
2002
, “
On the Relationship Between Ultrasonic and Micromechanical Properties of Contacting Rough Surfaces
,”
J. Mech. Phys. Solids
,
50
, pp.
1397
1416
.
6.
Severin
,
F. M.
, and
Solodov
,
I. Y.
,
1989
, “
Experimental Observation of Acoustic Demodulation in Reflection From a Solid-Solid Interface
,”
Sov. Phys. Acoust.
,
35
, pp.
447
448
.
7.
Ko
,
Sel Len
,
Severin
,
F. M.
, and
Solodov
,
I. Y.
,
1991
, “
Experimental Observation of the Influence of Contact Nonlinearity on the Reflection of Bulk Acoustic Waves and the Propagation of Surface Acoustic Waves
,”
Sov. Phys. Acoust.
,
37
, pp.
610
612
.
8.
Solodov
,
I. Y.
,
1998
, “
Ultrasonics of Non-Linear Contacts: Propagation, Reflection and NDE-Applications
,”
Ultrasonics
,
36
, pp.
383
390
.
9.
Buck
,
O.
,
Morris
,
W. L.
, and
Richardson
,
J. M.
,
1978
, “
Acoustic Harmonic Generation at Unbonded Interfaces and Fatigue Cracks
,”
Appl. Phys. Lett.
,
33
, pp.
371
373
.
10.
Kawashima, K., Nawa, K., and Hattori, Y., 1999, “Detection of Higher Harmonics With Large Amplitude Ultrasonics,” Proc. 6th Symp. Ultrasonic Testing, Japan Society of Non-Destructive Testing, Tokyo, pp. 44–45 (in Japanese).
11.
Breazeale
,
M. A.
, and
Thompson
,
D. O.
,
1963
, “
Finite-Amplitude Ultrasonic Waves in Aluminum
,”
Appl. Phys. Lett.
,
3
, pp.
77
78
.
12.
Thompson
,
R. B.
,
Buck
,
O.
, and
Thompson
,
D. O.
,
1976
, “
Higher Harmonics of Finite Amplitude Ultrasonic Waves in Solids
,”
J. Acoust. Soc. Am.
,
59
, pp.
1087
1094
.
13.
Hirsekorn
,
S.
,
2001
, “
Nonlinear Transfer of Ultrasound by Adhesive Joints—A Theoretical Description
,”
Ultrasonics
,
39
, pp.
57
68
.
14.
Van Den Abeele
,
K. E. A.
,
Johnson
,
P. A.
, and
Sutin
,
A.
,
2000
, “
Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS)
,”
Res. Nondestruct. Eval.
,
12
, pp.
17
30
.
15.
Donskoy
,
D.
,
Sutin
,
A.
, and
Ekimov
,
A.
,
2001
, “
Nonlinear Acoustic Interaction on Contact Interfaces and Its Use for Nondestructive Testing
,”
NDT & E Int.
,
34
, pp.
231
238
.
16.
Okada
,
J.
,
Ito
,
T.
,
Kawashima
,
K.
, and
Nishimura
,
N.
,
2001
, “
Finite Element Simulation of Nonlinear Acoustic Behavior at Minute Cracks Using Singular Element
,”
Jpn. J. Appl. Phys.
,
40
, pp.
3579
3582
.
17.
Achenbach, J. D., 1987, “Flaw Characterization by Ultrasonic Scattering Methods,” Solid Mechanics Research for Quantitative Non-Destructive Evaluation, J. D. Achenbach and Y. Rajapakse, eds., Martinus Nijhoff, Dordrecht, pp. 67–81.
18.
Richardson
,
J. M.
,
1979
, “
Harmonic Generation at an Unbonded Interface: I. Planar Interface Between Semi-Infinite Elastic Media
,”
Int. J. Eng. Sci.
,
17
, pp.
73
85
.
19.
Rudenko
,
O. V.
, and
Chin
,
A. U.
,
1994
, “
Nonlinear Acoustic Properties of a Rough Surface Contact and Acoustodiagnostics of a Roughness Height Distribution
,”
Acoust. Phys.
,
40
, pp.
593
596
.
20.
Johnson, K. L., 1985, Contact Mechanics, Cambridge Univ. Press, Cambridge, UK.
21.
Korshak
,
B. A.
,
Solodov
,
I. Y.
, and
Ballad
,
E. M.
,
2002
, “
DC-Effects, Sub-Harmonics, Stochasticity and “Memory” for Contact Acoustic Non-Linearity
,”
Ultrasonics
,
40
, pp.
707
713
.
22.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
23.
Larsson
,
J.
,
Biwa
,
S.
, and
Stora˚kers
,
B.
,
1999
, “
Inelastic Flattening of Rough Surfaces
,”
Mech. Mater.
,
31
, pp.
29
41
.
24.
Stora˚kers
,
B.
,
Biwa
,
S.
, and
Larsson
,
P.-L.
,
1997
, “
Similarity Analysis of Inelastic Contact
,”
Int. J. Solids Struct.
,
34
, pp.
3061
3083
.
25.
Biwa
,
S.
,
Ogaki
,
K.
, and
Shibata
,
T.
,
1999
, “
Analytical Aspects of Cumulative Superposition Procedure for Elastic Indentation Problems
,”
JSME Int. J., Ser. A
,
42
, pp.
167
175
.
You do not currently have access to this content.