Multiple-degree-of-freedom linear asymmetric nonviscously damped systems are considered. It is assumed that the nonviscous damping forces depend on the past history of velocities via convolution integrals over exponentially decaying kernel functions. An extended state-space approach involving a single asymmetric matrix is proposed. The nature of the eigensolutions in the extended state space has been explored. Some useful results relating the modal matrix in the extended state space and the modal matrix in the original space has been derived. Numerical examples are provided to illustrate the results.

1.
Biot, M. A., 1958, “Linear Thermodynamics and the Mechanics of Solids,” Proceedings of the Third U.S. National Congress on Applied Mechanics, ASME, New York.
2.
Woodhouse
,
J.
,
1998
, “
Linear Damping Models for Structural Vibration
,”
J. Sound Vib.
,
215
, pp.
547
569
.
3.
Adhikari
,
S.
,
2002
, “
Dynamics of Non-Viscously Damped Linear Systems
,”
J. Eng. Mech.
,
128
, pp.
328
339
.
4.
Cremer, L., and Heckl, M., 1973, Structure-Borne Sound, second edition, Springer-Verlag, Berlin, Germany, translated by E. E. Ungar.
5.
Muravyov
,
A.
,
1997
, “
Analytical Solutions in the Time Domain for Vibration Problems of Discrete Viscoelastic Systems
,”
J. Sound Vib.
,
199
, pp.
337
348
.
6.
Muravyov
,
A.
,
1998
, “
Forced Vibration Responses of a Viscoelastic Structure
,”
J. Sound Vib.
,
218
, pp.
892
907
.
7.
Muravyov
,
A.
, and
Hutton
,
S. G.
,
1997
, “
Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems
,”
ASME J. Appl. Mech.
,
64
, pp.
684
691
.
8.
Muravyov
,
A.
, and
Hutton
,
S. G.
,
1998
, “
Free Vibration Response Characteristics of a Simple Elasto-Hereditary System
,”
ASME J. Vibr. Acoust.
,
120
, pp.
628
632
.
9.
Wagner, N., and Adhikari, S., 2003, “Symmetric State-Space Formulation for a Class of Non-Viscously Damped Systems” Vol. 41, No. 5, pp. 951–956.
10.
Inman
,
D. J.
,
1983
, “
Dynamics of Asymmetric Non-Conservative Systems
,”
ASME J. Appl. Mech.
,
50
, pp.
199
203
.
11.
Adhikari
,
S.
,
2000
, “
On Symmetrizable Systems of Second Kind
,”
ASME J. Appl. Mech.
,
67
, pp.
797
802
.
12.
Adhikari
,
S.
,
2001
, “
Classical Normal Modes in Non-Viscously Damped Linear Systems
,”
AIAA J.
,
39
, pp.
978
980
.
13.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
, pp.
741
748
.
14.
Golla
,
D. F.
, and
Hughes
,
P. C.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time Domain Finite Element Formulation
,”
ASME J. Appl. Mech.
,
52
, pp.
897
906
.
15.
McTavish
,
D. J.
, and
Hughes
,
P. C.
,
1993
, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
,
115
, pp.
103
110
.
16.
Wagner
,
N.
,
2001
, “
Ein Direktes Verfahren zur Numerischen Lo¨sung von Schwingungssystemen mit Nachlassendem Geda¨chtnis
,”
Z. Angew. Math. Mech.
,
81
, pp.
327
328
.
17.
Adhikari
,
S.
,
2001
, “
Eigenrelations for Non-Viscously Damped Systems
,”
AIAA J.
,
39
, pp.
1624
1630
.
18.
Bishop
,
R. E. D.
, and
Price
,
W. G.
,
1979
, “
An Investigation into the Linear Theory of Ship Response to Waves
,”
J. Sound Vib.
,
62
(
3
), pp.
353
363
.
19.
Newland
,
D. E.
,
1987
, “
On the Modal Analysis of Nonconservative Linear Systems
,”
J. Sound Vib.
,
112
, pp.
69
96
.
20.
Newland, D. E., 1989, Mechanical Vibration Analysis and Computation, Longman, Harlow and John Wiley, New York.
21.
Adhikari
,
S.
,
1999
, “
Modal analysis of linear asymmetric non-conservative systems
,”
J. Eng. Mech.
,
125
(
12
), pp.
1372
1379
.
You do not currently have access to this content.