Multiple-degree-of-freedom linear asymmetric nonviscously damped systems are considered. It is assumed that the nonviscous damping forces depend on the past history of velocities via convolution integrals over exponentially decaying kernel functions. An extended state-space approach involving a single asymmetric matrix is proposed. The nature of the eigensolutions in the extended state space has been explored. Some useful results relating the modal matrix in the extended state space and the modal matrix in the original space has been derived. Numerical examples are provided to illustrate the results.
Issue Section:
Technical Papers
1.
Biot, M. A., 1958, “Linear Thermodynamics and the Mechanics of Solids,” Proceedings of the Third U.S. National Congress on Applied Mechanics, ASME, New York.
2.
Woodhouse
, J.
, 1998
, “Linear Damping Models for Structural Vibration
,” J. Sound Vib.
, 215
, pp. 547
–569
.3.
Adhikari
, S.
, 2002
, “Dynamics of Non-Viscously Damped Linear Systems
,” J. Eng. Mech.
, 128
, pp. 328
–339
.4.
Cremer, L., and Heckl, M., 1973, Structure-Borne Sound, second edition, Springer-Verlag, Berlin, Germany, translated by E. E. Ungar.
5.
Muravyov
, A.
, 1997
, “Analytical Solutions in the Time Domain for Vibration Problems of Discrete Viscoelastic Systems
,” J. Sound Vib.
, 199
, pp. 337
–348
.6.
Muravyov
, A.
, 1998
, “Forced Vibration Responses of a Viscoelastic Structure
,” J. Sound Vib.
, 218
, pp. 892
–907
.7.
Muravyov
, A.
, and Hutton
, S. G.
, 1997
, “Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems
,” ASME J. Appl. Mech.
, 64
, pp. 684
–691
.8.
Muravyov
, A.
, and Hutton
, S. G.
, 1998
, “Free Vibration Response Characteristics of a Simple Elasto-Hereditary System
,” ASME J. Vibr. Acoust.
, 120
, pp. 628
–632
.9.
Wagner, N., and Adhikari, S., 2003, “Symmetric State-Space Formulation for a Class of Non-Viscously Damped Systems” Vol. 41, No. 5, pp. 951–956.
10.
Inman
, D. J.
, 1983
, “Dynamics of Asymmetric Non-Conservative Systems
,” ASME J. Appl. Mech.
, 50
, pp. 199
–203
.11.
Adhikari
, S.
, 2000
, “On Symmetrizable Systems of Second Kind
,” ASME J. Appl. Mech.
, 67
, pp. 797
–802
.12.
Adhikari
, S.
, 2001
, “Classical Normal Modes in Non-Viscously Damped Linear Systems
,” AIAA J.
, 39
, pp. 978
–980
.13.
Bagley
, R. L.
, and Torvik
, P. J.
, 1983
, “Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,” AIAA J.
, 21
, pp. 741
–748
.14.
Golla
, D. F.
, and Hughes
, P. C.
, 1985
, “Dynamics of Viscoelastic Structures—A Time Domain Finite Element Formulation
,” ASME J. Appl. Mech.
, 52
, pp. 897
–906
.15.
McTavish
, D. J.
, and Hughes
, P. C.
, 1993
, “Modeling of Linear Viscoelastic Space Structures
,” ASME J. Vibr. Acoust.
, 115
, pp. 103
–110
.16.
Wagner
, N.
, 2001
, “Ein Direktes Verfahren zur Numerischen Lo¨sung von Schwingungssystemen mit Nachlassendem Geda¨chtnis
,” Z. Angew. Math. Mech.
, 81
, pp. 327
–328
.17.
Adhikari
, S.
, 2001
, “Eigenrelations for Non-Viscously Damped Systems
,” AIAA J.
, 39
, pp. 1624
–1630
.18.
Bishop
, R. E. D.
, and Price
, W. G.
, 1979
, “An Investigation into the Linear Theory of Ship Response to Waves
,” J. Sound Vib.
, 62
(3
), pp. 353
–363
.19.
Newland
, D. E.
, 1987
, “On the Modal Analysis of Nonconservative Linear Systems
,” J. Sound Vib.
, 112
, pp. 69
–96
.20.
Newland, D. E., 1989, Mechanical Vibration Analysis and Computation, Longman, Harlow and John Wiley, New York.
21.
Adhikari
, S.
, 1999
, “Modal analysis of linear asymmetric non-conservative systems
,” J. Eng. Mech.
, 125
(12
), pp. 1372
–1379
.Copyright © 2003
by ASME
You do not currently have access to this content.