Decay of end perturbations imposed on a prestrained semi-infinite rectangular plate is investigated in the context of plane-strain incremental finite elasticity. A separation of variables eigenfunction formulation is used for the perturbed field within the plate. Numerical results for the leading decay exponent are given for three hyperelastic materials with various boundary conditions at the long faces of the plate. The study exposes a considerable sensitivity of axial decay rates to boundary data, to initial strain and to constitutive behavior. It is suggested that the results are relevant to the applicability of Saint-Venant’s principle even though the eigenfunctions are not always self-equilibrating.

1.
Durban
,
D.
, and
Stronge
,
W. J.
,
1988
, “
Diffusion of Self-Equilibrating End Loads in Plane Strain Plasticity
,”
J. Mech. Phys. Solids
,
36
, pp.
459
476
.
2.
Durban
,
D.
, and
Stronge
,
W. J.
,
1988
, “
Diffusion of Self-Equilibrating End Loads in Elastic Solids
,”
ASME J. Appl. Mech.
,
55
, pp.
492
495
.
3.
Durban
,
D.
, and
Karp
,
B.
,
1992
, “
Axial Decay of Self-Equilibrating End Loads in Compressible Solids
,”
ASME J. Appl. Mech.
,
59
, pp.
738
743
.
4.
Abeyaratne
,
R.
,
Horgan
,
C. O.
, and
Chung
,
D.-T.
,
1985
, “
Saint-Venant End Effects for Incremental Plane Deformations of Incompressible Nonlinearly Elastic Materials
,”
ASME J. Appl. Mech.
,
52
, pp.
847
852
.
5.
Choi
,
I.
, and
Horgan
,
C. O.
,
1977
, “
Saint-Venant’s Principle and End Effects in Anisotropic Elasticity
,”
ASME J. Appl. Mech.
,
44
, pp.
424
430
.
6.
Choi
,
I.
, and
Horgan
,
C. O.
,
1978
, “
Saint-Venant End Effects for Deformation of Sandwich Strips
,”
Int. J. Solids Struct.
,
14
, pp.
187
195
.
7.
Horgan
,
C. O.
, and
Simmonds
,
J. G.
,
1994
, “
Saint-Venant End Effects in Composite Structures
,”
Composites Eng.
,
3
, pp.
279
286
.
8.
Hill
,
R.
,
1979
, “
On the Theory of Plane Strain in Finitely Deformed Compressible Materials
,”
Math. Proc. Cambridge Philos. Soc.
,
86
, pp.
161
178
.
9.
Durban
,
D.
, and
Stronge
,
W. J.
,
1992
, “
Diffusion of Incremental Loads in Prestrained Bars
,”
Proc. R. Soc. London, Ser. A
,
439
, pp.
583
600
.
10.
Hill
,
R.
,
1978
, “
Aspects of Invariance in Solid Mechanics
,”
Adv. Appl. Mech.
,
18
, pp.
1
75
.
11.
Blatz
,
P. J.
, and
Ko
,
W. L.
,
1962
, “
Application of Finite Elastic Theory to the Deformation of Rubbery Materials
,”
Trans. Soc. Rheol.
,
6
, pp.
223
251
.
12.
Stora˚kers
,
B.
,
1986
, “
On Material Representation and Constitutive Branching in Finite Compressible Elasticity
,”
J. Mech. Phys. Solids
,
34
, pp.
125
145
.
13.
Little
,
R. W.
,
1969
, “
Semi-Infinite Strip Problem with Built-In Edges
,”
ASME J. Appl. Mech.
,
36
, pp.
320
323
.
You do not currently have access to this content.